|
Real, D., & Calvo, D. (2024). Low-Resource Time-to-Digital Converters for Field Programmable Gate Arrays: A Review. Sensors, 24(17), 5512–15pp.
Abstract: A fundamental aspect in the evolution of Time-to-Digital Converters (TDCs) implemented within Field-Programmable Gate Arrays (FPGAs), given the increasing demand for detection channels, is the optimization of resource utilization. This study reviews the principal methodologies employed for implementing low-resource TDCs in FPGAs. It outlines the foundational architectures and interpolation techniques utilized to bolster TDC performances without unduly burdening resource consumption. Low-resource Tapped Delay Line, Vernier Ring Oscillator, and Multi-Phase Shift Counter TDCs, including the use of SerDes, are reviewed. Additionally, novel low-resource architectures are scrutinized, including Counter Gray Oscillator TDCs and interpolation expansions using Process-Voltage-Temperature stable IODELAYs. Furthermore, the advantages and limitations of each approach are critically assessed, with particular emphasis on resolution, precision, non-linearities, and especially resource utilization. A comprehensive summary table encapsulating existing works on low-resource TDCs is provided, offering a comprehensive overview of the advancements in the field.
|
|
Real, D., Calvo, D., Manzaneda, M., Diaz, A., Gozzini, S. R., Zornoza, J. D., et al. (2025). Novel Hybrid Low-Resource Field-Programmable-Gate-Array Time-to-Digital-Converter Architecture. IEEE Trans. Instrum. Meas., 74, 2000812–12pp.
Abstract: Time measurements are challenging in electronics given their various applications. The main focus lies not in achieving greater precision, as conventional architectures have already reached picosecond levels. Instead, the challenge stems from the use of low resources and the substantial expansion in the number of channels. This study presents a novel architecture for the implementation of time-to-digital converters (TDCs) in applications where resources are constrained. The introduced field-programmable-gate-array (FPGA)-based TDC offers a resolution of 415.84 ps, a single-shot precision of 0.45 least significant bits (LSBs) (186 ps r.m.s.) while maintaining a minimal resource occupancy. Built upon a multishift phase counter, the TDC is extended with a tap delay using the input delay available in the FPGA hardware input, doubling the resolution of the TDC. The resource utilization is minimized when compared to low-resource state-of-the-art TDCs. The number of look-up tables (LUTs) has been reduced to 102, and the number of registers to 213. Furthermore, the presented TDC exhibits favorable differential nonlinearity (DNL) (0.2 LSBs) and integral nonlinearity (0.15 LSBs). The TDC has been successfully implemented on an Artix7-2 from Xilinx. This design provides a resource-effective solution for applications requiring high precision and low resource consumption.
|
|
Real, D., Calvo, D., Zornoza, J. D., Manzaneda, M., Gozzini, R., Ricolfe-Viala, C., et al. (2024). Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection. Sensors, 24(7), 2084–12pp.
Abstract: Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.
|