|
Bandos, I. A., de Azcarraga, J. A., & Meliveo, C. (2011). Extended supersymmetry in massless conformal higher spin theory. Nucl. Phys. B, 853(3), 760–776.
Abstract: We propose superfield equations in tensorial N-extended superspaces to describe the N = 2,4,8 supersymmetric generalizations of free conformal higher spin theories. These can be obtained by quantizing a superparticle model in N-extended tensorial superspace. The N-extended higher spin supermultiplets just contain scalar and 'spinor' fields in tensorial space so that, in contrast with the standard (super)space approach, no nontrivial generalizations of the Maxwell or Einstein equations to tensorial space appear when N > 2. For N = 4,8, the higher spin-tensorial components of the extended tensorial superfields are expressed through additional scalar and spinor fields in tensorial space which obey the same free higher spin equations, but that are axion-like in the sense that they possess Peccei-Quinn-like symmetries.
|
|
|
Bandos, I. A., de Azcarraga, J. A., & Meliveo, C. (2012). Conformal higher spin theory in extended tensorial superspace. Fortschritte Phys.-Prog. Phys., 60(7-8), 861–867.
Abstract: We discuss the formulation of free conformal higher spin theories with extended N = 2, 4, 8 supersymmetry in N-extended tensorial superspaces. The superfield higher spin equations can be obtained by quantizing a superparticle model in N-extended tensorial superspace. The N-extended higher spin supermultiplets just contain scalar and spinor fields in tensorial space so that, in contrast with the standard (super)space approach, no nontrivial generalizations of the Maxwell or Einstein equations to tensorial space appear when N > 2. For N = 4, 8, the higher spin-tensorial components of the extended tensorial superfields are expressed through additional scalar and spinor fields in tensorial space which obey the same free higher spin equations, but that are axion-like in the sense that they possess Peccei-Quinn-like symmetries.
|
|
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Robustness of braneworld scenarios against tensorial perturbations. Class. Quantum Gravity, 32(21), 215011–10pp.
Abstract: Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
|
|
|
Pastore, A., Davesne, D., & Navarro, J. (2014). Nuclear matter response function with a central plus tensor Landau interaction. J. Phys. G, 41(5), 055103–17pp.
Abstract: We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased.
|
|