|
Abbas, G. (2016). Right-right-left extension of the Standard Model. Mod. Phys. Lett. A, 31(19), 1650117–10pp.
Abstract: A right-right-left extension of the Standard Model is proposed. In this model, SM gauge group SU(2)(L) circle times U(1)(Y) is extended to SU(2)(L) circle times SU(2)(R) circle times SU(2)'(R) circle times SU(2)'(L) circle times U(1)(Y). The gauge symmetries SU(2)'(R), SU(2)'(L) are the mirror counterparts of the SU(2)(L) and SU(2)(R), respectively. Parity is spontaneously broken when the scalar Higgs fields acquire vacuum expectation values (VEVs) in a certain pattern. Parity is restored at the scale of SU(2)'(L). The gauge sector has a unique pattern. The scalar sector of the model is optimum, elegant and unique.
|
|
Abdullahi, A. M. et al, & Lopez-Pavon, J. (2023). The present and future status of heavy neutral leptons. J. Phys. G, 50(2), 020501–100pp.
Abstract: The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
|
|
AbdusSalam, S. S. et al, & Eberhardt, O. (2022). Simple and statistically sound recommendations for analysing physical theories. Rep. Prog. Phys., 85(5), 052201–11pp.
Abstract: Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
|
|
Abraham, R. M. et al, & Garcia Soto, A. (2022). Tau neutrinos in the next decade: from GeV to EeV. J. Phys. G, 49(11), 110501–148pp.
Abstract: Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
|
|
Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. J. Cosmol. Astropart. Phys., 08(8), 006–27pp.
Abstract: Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.
|
|
Achterberg, A., van Beekveld, M., Caron, S., Gomez-Vargas, G. A., Hendriks, L., & Ruiz de Austri, R. (2017). Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter. J. Cosmol. Astropart. Phys., 12(12), 040–23pp.
Abstract: The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.
|
|
Adhikari, R. et al, Pastor, S., & Valle, J. W. F. (2017). A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys., 01(1), 025–247pp.
Abstract: We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
|
|
Adolf, P., Hirsch, M., Krieg, S., Pas, H., & Tabet, M. (2024). Fitting the DESI BAO data with dark energy driven by the Cohen-Kaplan-Nelson bound. J. Cosmol. Astropart. Phys., 08(8), 048–18pp.
Abstract: Gravity constrains the range of validity of quantum field theory. As has been pointed out by Cohen, Kaplan, and Nelson (CKN), such effects lead to interdependent ultraviolet (UV) and infrared (IR) cutoffs that may stabilize the dark energy of the universe against quantum corrections, if the IR cutoff is set by the Hubble horizon. As a consequence of the cosmic expansion, this argument implies a time-dependent dark energy density. In this paper we confront this idea with recent data from DESI BAO, Hubble and supernova measurements. We find that the CKN model provides a better fit to the data than the Lambda CDM model and can compete with other models of time-dependent dark energy that have been studied so far.
|
|
Adolf, P., Hirsch, M., & Päs, H. (2023). Radiative neutrino masses and the Cohen-Kaplan-Nelson bound. J. High Energy Phys., 11(11), 078–14pp.
Abstract: Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
|
|
Aebischer, J., Brivio, I., Celis, A., Evans, J. A., Jiang, Y., Kumar, J., et al. (2018). WCxf : An exchange format for Wilson coefficients beyond the Standard Model. Comput. Phys. Commun., 232, 71–83.
Abstract: We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved.
|