|
ANTARES Collaboration(Adrian-Martinez, S. et al), Bigongiari, C., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., Lambard, G., et al. (2013). First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys., 11(11), 032–22pp.
Abstract: A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W-, tau(+)tau(-)).
|
|
|
Ardu, M., Queiroz, D., & Vives, O. (2025). Asymmetric dark matter in SUSY with approximate R-symmetry. J. Cosmol. Astropart. Phys., 08(8), 013–28pp.
Abstract: We implement the asymmetric dark matter framework, linking the ordinary and dark matter abundances, within a supersymmetric context. We consider a supersymmetric model that respects an approximate U(1)R symmetry, which is broken in such a way that at high temperature the R breaking sector mediate processes in equilibrium, but at the SUSY mass scale, the sparticles asymmetry is frozen. In this framework, the gravitino serves as the dark matter candidate, and its mass is predicted to be similar to 10 GeV to match the observed relic abundance. We identify several realistic spectra; however, the requirement for the Next-to-Lightest Supersymmetric Particle (NLSP) to decay into the gravitino before Big Bang Nucleosynthesis constrains the viable spectrum to masses above 2 TeV.
|
|
|
Bertone, G., Calore, F., Caron, S., Ruiz de Austri, R., Kim, J. S., Trotta, R., et al. (2016). Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments. J. Cosmol. Astropart. Phys., 04(4), 037–20pp.
Abstract: We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass similar to 80 – 100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass similar to 180 – 200 GeV annihilating into (l) over barl with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II – notably through searches for charginos and neutralinos, squarks and light smuons – and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.
|
|
|
Bertone, G., Cerdeño, D. G., Fornasa, M., Ruiz de Austri, R., Strege, C., & Trotta, R. (2012). Global fits of the cMSSM including the first LHC and XENON100 data. J. Cosmol. Astropart. Phys., 01(1), 015–23pp.
Abstract: We present updated global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including the most recent constraints from the ATLAS and CMS detectors at the LHC, as well as the most recent results of the XENON100 experiment. Our robust analysis takes into account both astrophysical and hadronic uncertainties that enter in the calculation of the rate of WIMP-induced recoils in direct detection experiment. We study the consequences for neutralino Dark Matter, and show that current direct detection data already allow to robustly rule out the so-called Focus Point region, therefore demonstrating the importance of particle astrophysics experiments in constraining extensions of the Standard Model of Particle Physics. We also observe an increased compatibility between results obtained from a Bayesian and a Frequentist statistical perspective. We find that upcoming ton-scale direct detection experiments will probe essentially the entire currently favoured region (at the 99% level), almost independently of the statistical approach used. Prospects for indirect detection of the cMSSM are further reduced.
|
|
|
Boubekeur, L., Choi, K. Y., Ruiz de Austri, R., & Vives, O. (2010). The degenerate gravitino scenario. J. Cosmol. Astropart. Phys., 04(4), 005–26pp.
Abstract: In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(-2) GeV. While for stau NLSP, temperatures of T-RH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.
|
|