|
Galli, P., Goldstein, K., Katmadas, S., & Perz, J. (2011). First-order flows and stabilisation equations for non-BPS extremal black holes. J. High Energy Phys., 06(6), 070–28pp.
Abstract: We derive a generalised form of flow equations for extremal static and rotating non-BPS black holes in four-dimensional ungauged N = 2 supergravity coupled to vector multiplets. For particular charge vectors, we give stabilisation equations for the scalars, analogous to the BPS case, describing full known solutions. Based on this, we propose a generic ansatz for the stabilisation equations, which surprisingly includes ratios of harmonic functions.
|
|
|
Galli, P., Goldstein, K., & Perz, J. (2013). On anharmonic stabilisation equations for black holes. J. High Energy Phys., 03(3), 036–7pp.
Abstract: We investigate the stabilisation equations for sufficiently general, yet regular, extremal (supersymmetric and non-supersymmetric) and non-extremal black holes in four-dimensional N = 2 supergravity using both the H-FGK approach and a generalisation of Denef's formalism. By an explicit calculation we demonstrate that the equations necessarily contain an anharmonic part, even in the static, spherically symmetric and asymptotically flat case.
|
|
|
Galli, P., Ortin, T., Perz, J., & Shahbazi, C. S. (2013). Black-hole solutions of N=2, d=4 supergravity with a quantum correction, in the H-FGK formalism. J. High Energy Phys., 04(4), 157–37pp.
Abstract: We apply the H-FGK formalism to the study of some properties of a general class of black holes in N = 2 supergravity in four dimensions that correspond to the harmonic and hyperbolic ansatze and we obtain explicit extremal and non-extremal solutions for the t(3) model with and without a quantum correction. Not all solutions of the corrected model (quantum black holes), including in particular a solution with a single q(1) charge, have a regular classical limit.
|
|
|
Sanchis-Lozano, M. A. (2022). Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Universe, 8(8), 396–13pp.
Abstract: We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.
|
|