|
Capozziello, S., Harko, T., Lobo, F. S. N., & Olmo, G. J. (2013). Hybrid Modified Gravity Unifying Local Tests, Galactic Dynamics and Late-Time Cosmic Acceleration. Int. J. Mod. Phys. D, 22(12), 1342006–7pp.
Abstract: The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini, the “true” gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.
|
|
Olmo, G. J. (2011). Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D, 20(4), 413–462.
Abstract: We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
|