|
Arrechea, J., Delhom, A., & Jimenez-Cano, A. (2021). Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity. Chin. Phys. C, 45(1), 013107–8pp.
Abstract: We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.
|
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2018). Born-Infeld inspired modifications of gravity. Phys. Rep., 727, 1–129.
Abstract: General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
|
|
Casals, M., Fabbri, A., Martinez, C., & Zanelli, J. (2016). Quantum dress for a naked singularity. Phys. Lett. B, 760, 244–248.
Abstract: We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.
|
|
Navarro-Salas, J. (2024). Black holes, conformal symmetry, and fundamental fields. Class. Quantum Gravity, 41(8), 085003–14pp.
Abstract: Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
|
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
|
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2018). Accelerated observers and the notion of singular spacetime. Class. Quantum Gravity, 35(5), 055010–18pp.
Abstract: Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
|