|
Abbas, G., Celis, A., Li, X. Q., Lu, J., & Pich, A. (2015). Flavour-changing top decays in the aligned two-Higgs-doublet model. J. High Energy Phys., 06(6), 005–26pp.
Abstract: We perform a complete one-loop computation of the two-body flavour-changing top decays t --> ch and t --> cV (V = gamma, Z), within the aligned two-Higgs-doublet model. We evaluate the impact of the model parameters on the associated branching ratios, taking into account constraints from flavour data and measurements of the Higgs properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates for such flavour-changing top decays lie below the expected sensitivity of the future high-luminosity phase of the LHC. Measurements of the Higgs signal strength in the di-photon channel are found to play an important role in limiting the size of the t --> ch decay rate when the charged scalar of the model is light.
|
|
|
Albaladejo, M., Daub, J. T., Hanhart, C., Kubis, B., & Moussallamd, B. (2017). How to employ (B)over-bar(d)(0) -> J/psi(pi eta, (K)over-barK) decays to extract information on pi eta scattering. J. High Energy Phys., 04(4), 010–28pp.
Abstract: We demonstrate that dispersion theory allows one to deduce crucial information on pi eta scattering from the final-state interactions of the light mesons visible in the spectral distributions of the decays (B) over bar (0)(d) -> J/psi(pi(0)eta, K+K-, K-0 (K) over bar (0)). Thus high-quality measurements of these differential observables are highly desired. The corresponding rates are predicted to be of the same order of magnitude as those for (B) over bar (0)(d) -> J/psi pi(+)pi(-) measured recently at LHCb, letting the corresponding measurement appear feasible.
|
|
|
Alcaide, J., Salvado, J., & Santamaria, A. (2018). Fitting flavour symmetries: the case of two-zero neutrino mass textures. J. High Energy Phys., 07(7), 164–18pp.
Abstract: We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a chi(2) comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures A(1) and A(2) seem favoured because they give a small chi(2), allow for large regions in parameter space and give neutrino masses compatible with Cosmology limits. The other “allowed” textures remain allowed although with a very constrained parameter space, which, in some cases, could be in conflict with Cosmology. We have also revisited the “forbidden” textures and studied the stability of the results when the texture zeroes are not exact. Most of the forbidden textures remain forbidden, but textures F-1 and F-3 are particularly sensitive to small perturbations and could become allowed.
|
|
|
ALEPH, D. E. L. P. H. I., L3 and OPAL Collaborations, LEP Electroweak Working Group(Schael, S. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2013). Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP. Phys. Rep., 532(4), 119–244.
Abstract: Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma – 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019.
|
|
|
Alioli, S., Fuster, J., Garzelli, M. V., Gavardi, A., Irles, A., Melini, D., et al. (2022). Phenomenology of t(t)over-barj plus X production at the LHC. J. High Energy Phys., 05(5), 146–63pp.
Abstract: We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
|
|
|
Alioli, S., Fuster, J., Irles Quiles, A., Moch, S., Uwer, P., & Vos, M. (2012). A new observable to measure the top quark mass at hadron colliders. Pramana-J. Phys., 79(4), 809–812.
Abstract: The t (t) over bar + jet + X differential cross-section in proton-proton collisions at 7 TeV centre of mass energy is investigated with respect to its sensitivity to the top quark mass. The analysis includes higher order QCD corrections at NLO. The impact of the renormalization scale (mu(R)), the factorization (mu(F)) scale and of the choice of different proton's PDF (parton distribution function) has been evaluated. In this study it is concluded that differential jet rates offer a promising option for alternative mass measurements of the top quark, with theoretical uncertainties below 1 GeV.
|
|
|
Allanach, B. C., Martin, S. P., Robertson, D. G., & Ruiz de Austri, R. (2017). The inclusion of two-loop SUSYQCD corrections to gluino and squark pole masses in the minimal and next-to-minimal supersymmetric standard model: SOFTSUSY3.7. Comput. Phys. Commun., 219, 339–345.
Abstract: We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (R-parity conserving or violating) or the real R-parity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production cross-sections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to next-to leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/
|
|
|
Arbelaez, C., Carcamo Hernandez, A. E., Cepedello, R., Kovalenko, S., & Schmidt, I. (2020). Sequentially loop suppressed fermion masses from a single discrete symmetry. J. High Energy Phys., 06(6), 043–24pp.
Abstract: We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurements of inclusive and differential fiducial cross-sections of t(t)over-bar production with additional heavy-flavour jets in proton-proton collisions at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 04(4), 046–66pp.
Abstract: This paper presents measurements of tt (t) over bar production in association with additional b-jets in pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets tt (t) over bar decay channels. Results are presented at particle level in the form of inclusive cross-sections of tt final states with three and four b-jets as well as differential cross-sections as a function of global event properties and properties of b-jet pairs. The measured inclusive fiducial cross-sections generally exceed the t (t) over barb (b) over bar predictions from various next-to-leading-order matrix element calculations matched to a parton shower but are compatible within the total uncertainties. The experimental uncertainties are smaller than the uncertainties in the predictions. Comparisons of state-of-the-art theoretical predictions with the differential measurements are shown and good agreement with data is found for most of them.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at s=13 TeV with the ATLAS detector. J. High Energy Phys., 05(5), 041–50pp.
Abstract: This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton-proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb(-1) are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered.
|
|