|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2017). Gravity and handedness of photons. Int. J. Mod. Phys. D, 26(12), 1742001–5pp.
Abstract: Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
|
|
|
Balbinot, R., & Fabbri, A. (2023). The Hawking Effect in the Particles-Partners Correlations. Physics, 5(4), 968–982.
Abstract: We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
|
|
|
Delhom, A., Mariz, T., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2022). Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity. J. Cosmol. Astropart. Phys., 07(7), 018–27pp.
Abstract: The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.
|
|
|
Navarro-Salas, J. (2024). Black holes, conformal symmetry, and fundamental fields. Class. Quantum Gravity, 41(8), 085003–14pp.
Abstract: Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
|
|