|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2018). On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation. Symmetry-Basel, 10(12), 763–14pp.
Abstract: It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.
|
|
Amarilo, K. M., Ferreira Filho, M. B., Araujo Filho, A. A., & Reis, J. A. A. S. (2024). Gravitational waves effects in a Lorentz-violating scenario. Phys. Lett. B, 855, 138785–7pp.
Abstract: This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.
|
|
ANTARES and HESS Collaborations(Petroff, E. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., Tönnis, C., et al. (2017). A polarized fast radio burst at low Galactic latitude. Mon. Not. Roy. Astron. Soc., 469(4), 4465–4482.
Abstract: We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Study of the B-0 (770)degrees K-*(892)(0) decay with an amplitude analysis of B-0 ((+-))(K+pi(-)) decays. J. High Energy Phys., 05(5), 026–31pp.
Abstract: An amplitude analysis of B-0 ((+-))(K+-) decays is performed in the two-body invariant mass regions 300 < m((+-)) < 1100 MeV/c(2), accounting for the (0), , f(0)(500), f(0)(980) and f(0)(1370) resonances, and 750 < m(K+-) < 1200 MeV/c(2), which is dominated by the K-*(892)(0) meson. The analysis uses 3 fb(-1) of proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The CP averages and asymmetries are measured for the magnitudes and phase differences of the con- tributing amplitudes. The CP-averaged longitudinal polarisation fractions of the vector-vector modes are found to be fK*0 = 0.164 +/- 0.015 +/- 0.022 and fK*0 = 0.68 +/- 0.17 +/- 0.16, and their CP asymmetries, AK*0 = -0.62 +/- 0.09 +/- 0.09 and AK*0 = -0.13 +/- 0.27 +/- 0.13, where the first uncertainty is statistical and the second systematic.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of the Lambda(0)(b) -> J/psi Lambda angular distribution and the Lambda(0)(b) polarisation in pp collisions. J. High Energy Phys., 06(6), 110–30pp.
Abstract: This paper presents an analysis of the Lambda(0)(b) -> J/psi Lambda angular distribution and the transverse production polarisation of Lambda(0)(b) baryons in proton-proton collisions at centre-of-mass energies of 7, 8 and 13TeV. The measurements are performed using data corresponding to an integrated luminosity of 4.9 fb(-1), collected with the LHCb experiment. The polarisation is determined in a fiducial region of Lambda(0)(b) transverse momentum and pseudorapidity of 1 < p(T) < 20 GeV/c and 2 < eta < 5, respectively. The data are consistent with Lambda(0)(b) baryons being produced unpolarised in this region. The parity-violating asymmetry parameter of the Lambda -> p pi(-) decay is also determined from the data and its value is found to be consistent with a recent measurement by the BES III collaboration.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Strong constraints on the b -> s gamma photon polarisation from B-0 -> K(*0)e(+)e(-) decays. J. High Energy Phys., 12(12), 081–25pp.
Abstract: An angular analysis of the B-0 -> K*(0)e(+)e(-) decay is performed using a data sample corresponding to an integrated luminosity of 9 fb(-1) of pp collisions collected with the LHCb experiment. The analysis is conducted in the very low dielectron mass squared (q(2)) interval between 0.0008 and 0.257 GeV2, where the rate is dominated by the B-0 -> K*(0)gamma transition with a virtual photon. The fraction of longitudinal polarisation of the K*(0) meson, F-L, is measured to be F-L = (4.4 +/- 2.6 +/- 1.4)%, where the first uncertainty is statistical and the second systematic. The A(T)(Re) observable, which is related to the lepton forward-backward asymmetry, is measured to be A(T)(Re) = -0.06 +/- 0.08 +/- 0.02. The A(T)((2)) and A(T)(Im) transverse asymmetries, which are sensitive to the virtual photon polarisation, are found to be A(T)((2)) = 0.11 +/- 0.10 +/- 0.02 and A(T)(Im) = 0.02 +/- 0.10 +/- 0.01. The results are consistent with Standard Model predictions and provide the world's best constraint on the b -> s gamma photon polarisation.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Measurement of the Y(nS) polarizations in pp collisions at root s=7 and 8 TeV. J. High Energy Phys., 12(12), 110–60pp.
Abstract: The polarization of the (sic) (1S), (sic) (2S) and (sic) (3S) mesons, produced in pp collisions at centre-of-mass energies root s = 7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2 fb(-1), respectively. The measurements are performed in three polarization frames, using (sic) -> μμdecays in the kinematic region of the transverse momentum p(T)((sic)) < 30 GeV/c and rapidity 2.2 < y((sic)) < 4.5. No large polarization is observed.
|
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Angular analysis of B0 -> D*- D*s+ with D*s+ -> Ds + gamma decays. J. High Energy Phys., 06(6), 177–30pp.
Abstract: The first full angular analysis of the B0 -> D-Ds+ decay is performed using 6 fb(-1) of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The Ds+-> Ds+gamma and D*- -> D<overbar></mml:mover>0- vector meson decays are used with the subsequent Ds+ -> K+K-pi (+) and D<overbar></mml:mover>0 -> K+pi (-) decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be f(L) = 0.578 +/- 0.010 +/- 0.011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [B(B0 -> D-Ds+) x B(Ds+-> Ds+gamma)]/B(B-0 -> D(*-)Ds+) is measured to be 2.045 +/- 0.022 +/- 0.071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed B-s -> D(*-)Ds+ decay is made with a significance of seven standard deviations. The branching fraction ratio B(B-s -> D(*-)Ds<mml:mo>+)/B(B-0 -> D(*-)Ds<mml:mo>+) is measured to be 0.049 +/- 0.006 +/- 0.003 +/- 0.002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractions.<fig id=“Figa” position=“anchor”><graphic position=“anchor” specific-use=“HTML” mime-subtype=“JPEG” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“MediaObjects/13130202116089FigaHTML.jpg” id=“MO1”></graphic
|
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Λc+ polarimetry using the dominant hadronic mode. J. High Energy Phys., 07(7), 228–26pp.
Abstract: The polarimeter vector field for multibody decays of a spin-half baryon is introduced as a generalisation of the baryon asymmetry parameters. Using a recent amplitude analysis of the Lambda(+)(c) -> pK(-)pi(+) decay performed at the LHCb experiment, we compute the distribution of the kinematic-dependent polarimeter vector for this process in the space of Mandelstam variables to express the polarised decay rate in a model-agnostic form. The obtained representation can facilitate polarisation measurements of the Lambda(+)(c) baryon and eases inclusion of the Lambda(+)(c)-> pK(-)pi(+) decay mode in hadronic amplitude analyses.
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of polarization amplitudes and CP asymmetries in B-0 -> phi K*(892)(0). J. High Energy Phys., 05(5), 069–24pp.
Abstract: An angular analysis of the decay B (0) -> phi K (*)(892)(0) is reported based on a pp collision data sample, corresponding to an integrated luminosity of 1.0 fb(-1), collected at a centre-of-mass energy of root S = 7 TeV with the LHCb detector. The P-wave amplitudes and phases are measured with a greater precision than by previous experiments, and confirm about equal amounts of longitudinal and transverse polarization. The S-wave K+ pi(-) and K+ K- contributions are taken into account and found to be significant. A comparison of the B (0) -> phi K (*)(892)(0) and results shows no evidence for direct CP violation in the rate asymmetry, in the triple-product asymmetries or in the polarization amplitudes and phases.
|