|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the inclusive isolated-photon cross section in pp collisions at root s=13 TeV using 36 fb(-1) of ATLAS data. J. High Energy Phys., 10(10), 203–51pp.
Abstract: The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb(-1). The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties.
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the ratio of cross sections for inclusive isolated-photon production in pp collisions at root s=13 and 8 TeV with the ATLAS detector. J. High Energy Phys., 04(4), 093–47pp.
Abstract: The ratio of the cross sections for inclusive isolated-photon production in pp collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb(-1) and 20.2 fb(-1), respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of 2.5 (5) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for Z boson production at 13 and 8 TeV using the decay channels Z e(+)e(-) and Z (+-) is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.
|
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., et al. (2020). Measurement of isolated-photon plus two-jet production in pp collisions at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 03(3), 179–49pp.
Abstract: The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb(-1). Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, gamma + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
|
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Measurement of the inclusive isolated prompt photon cross section in pp collisions at root s=8 TeV with the ATLAS detector. J. High Energy Phys., 08(8), 005–42pp.
Abstract: A measurement of the cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV is presented. The measurement covers the pseudorapidity ranges vertical bar eta(gamma)vertical bar < 1.37 and 1.56 aecurrency sign vertical bar eta(gamma)vertical bar < 2.37 in the transverse energy range 25 < E-T(gamma) < 1500 GeV. The results are based on an integrated luminosity of 20.2 fb(-1), recorded by the ATLAS detector at the LHC. Photon candidates are identified by combining information from the calorimeters and the inner tracker. The background is subtracted using a data-driven technique, based on the observed calorimeter shower-shape variables and the deposition of hadronic energy in a narrow cone around the photon candidate. The measured cross sections are compared with leading-order and next-to-leading order perturbative QCD calculations and are found to be in a good agreement over ten orders of magnitude.
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo, F. L., et al. (2021). Measurement of the production cross section of pairs of isolated photons in pp collisions at 13 TeV with the ATLAS detector. J. High Energy Phys., 11(11), 169–53pp.
Abstract: A measurement of prompt photon-pair production in proton-proton collisions at root s = 13 TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb(-1). Events with two photons in the wellinstrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of p(T,gamma 1(2)) > 40 (30) GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leadingorder calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.
|
|
Cieri, L., & Sborlini, G. F. R. (2021). Exploring QED Effects to Diphoton Production at Hadron Colliders. Symmetry-Basel, 13(6), 994–17pp.
Abstract: In this article, we report phenomenological studies about the impact of O(alpha) corrections to diphoton production at hadron colliders. We explore the application of the Abelianized version of the qT-subtraction method to efficiently compute NLO QED contributions, taking advantage of the symmetries relating QCD and QED corrections. We analyze the experimental consequences due to the selection criteria and we find percent-level deviations for M-gamma gamma > 1TeV. An accurate description of the tail of the invariant mass distribution is very important for new physics searches which have the diphoton process as one of their main backgrounds. Moreover, we emphasize the importance of properly dealing with the observable photons by reproducing the experimental conditions applied to the event reconstruction.
|
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Study of exclusive photoproduction of charmonium in ultra-peripheral lead-lead collisions. J. High Energy Phys., 06(6), 146–25pp.
Abstract: The cross-sections of exclusive (coherent) photoproduction J/psi and (2S) mesons in ultra-peripheral PbPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02TeV are measured using a data sample corresponding to an integrated luminosity of 228 +/- 10 μb(-1), collected by the LHCb experiment in 2018. The differential cross-sections are measured separately as a function of transverse momentum and rapidity in the nucleus-nucleus centre-of-mass frame for J/psi and psi(2S) mesons. The integrated cross-sections are measured to be sigma(coh)(J/psi) = 5.965 +/- 0.059 +/- 0.232 +/- 0.262mb and sigma(coh)(psi(2S)) = 0.923 +/- 0.086 +/- 0.028 +/- 0.040mb, where the first listed uncertainty is statistical, the second systematic and the third due to the luminosity determination. The cross-section ratio is measured to be sigma(coh)(psi(2S)) /sigma(coh)(J/psi) = 0.155 +/- 0.014 +/- 0.003, where the first uncertainty is statistical and the second is systematic. These results are compatible with theoretical predictions.
|
|
NEXT Collaboration(Fernandes, A. F. M. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Diaz, J., et al. (2020). Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield. J. High Energy Phys., 04(4), 034–18pp.
Abstract: High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
|
|
NEXT Collaboration(Henriques, C. A. O. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., Carrion, J. V., et al. (2019). Electroluminescence TPCs at the thermal diffusion limit. J. High Energy Phys., 01(1), 027–23pp.
Abstract: The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the Xe-136 isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 for pure xenon down to 2.5 using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.
|