|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2018). On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation. Symmetry-Basel, 10(12), 763–14pp.
Abstract: It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.
|
|
Navarro-Salas, J., & Pla, S. (2022). Particle Creation and the Schwinger Model. Symmetry-Basel, 14(11), 2435–9pp.
Abstract: We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.
|