|
Agullo, I., Navarro-Salas, J., & Parker, L. (2012). Enhanced local-type inflationary trispectrum from a non-vacuum initial state. J. Cosmol. Astropart. Phys., 05(5), 019–13pp.
Abstract: We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k(3), is much smaller than the others, k(3) << k(1,2,4). For those squeezed con figurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order epsilon(k(1)/k(3))(2). This amplitude could be larger than the prediction of the so-called Maldacena consistency relation by a factor as large as 10(6), and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.
|
|
|
Creminelli, P., Norena, J., Pena, M., & Simonovic, M. (2012). Khronon inflation. J. Cosmol. Astropart. Phys., 11(11), 032–16pp.
Abstract: We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t -> (t) over tilde (t), or equivalently under field redefinition of the inflaton phi -> (phi) over tilde(phi). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/k(L) in the squeezed limit k(L) -> 0 compared to the local shape.
|
|