|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of t(t)over-bar production in association with additional b-jets in the eμ final state in proton-proton collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 01(1), 068–77pp.
Abstract: This paper presents measurements of top-antitop quark pair (t (t) over bar) production in association with additional b-jets. The analysis utilises 140 fb(-1) of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four b-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and b-jet pair properties. Observable quantities characterising b-jets originating from the top quark decay and additional b-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with t (t) over barb (b) over bar predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
|
|
Caron, S., Dobreva, N., Ferrer Sanchez, A., Martin-Guerrero, J. D., Odyurt, U., Ruiz de Austri, R., et al. (2025). Trackformers: in search of transformer-based particle tracking for the high-luminosity LHC era. Eur. Phys. J. C, 85(4), 460–20pp.
Abstract: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.
|
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Search for same-charge top-quark pair production in pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 02(2), 084–52pp.
Abstract: A search for the production of top-quark pairs with the same electric charge (tt or (tt) over bar) is presented. The analysis uses proton-proton collision data at root s = 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb(-1). Events with two same-charge leptons and at least two b-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95% confidence level. Corresponding limits on the three Wilson coefficients associated with the O-tu((1)), O-Qu((1)), and O-Qu((8)) operators in the Standard Model Effective Field Theory framework are derived.
|
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2025). Search for diphoton resonances in the 66 to 110 GeV mass range using pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 01(1), 053–45pp.
Abstract: A search is performed for light, spin-0 bosons decaying into two photons in the 66 to 110 GeV mass range, using 140 fb(-1) of proton-proton collisions at root s = 13TeV produced by the Large Hadron Collider and collected by the ATLAS detector. Multivariate analysis techniques are used to define event categories that improve the sensitivity to new resonances beyond the Standard Model. A model-independent search for a generic spin-0 particle and a model-dependent search for an additional low-mass Higgs boson are performed in the diphoton invariant mass spectrum. No significant excess is observed in either search. Mass-dependent upper limits at the 95% confidence level are set in the model-independent scenario on the fiducial cross-section times branching ratio into two photons in the range of 8 fb to 53 fb. Similarly, in the model-dependent scenario upper limits are set on the total cross-section times branching ratio into two photons as a function of the Higgs boson mass in the range of 19 fb to 102 fb.
|
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in pp collisions at √s=13 TeV with the ATLAS detector. Phys. Lett. B, 861, 139277–21pp.
Abstract: This Letter presents a constraint on the total width of the Higgs boson (Gamma(H)) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on Gamma(H) is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).
|
|
|