|
Akhmedov, E., & Martinez-Mirave, P. (2022). Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field. J. High Energy Phys., 10(10), 144–35pp.
Abstract: The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
|
|
|
Alonso-Gonzalez, D., Amaral, D. W. P., Bariego-Quintana, A., Cerdeño, D., & de los Rios, M. (2023). Measuring the sterile neutrino mass in spallation source and direct detection experiments. J. High Energy Phys., 12(12), 096–27pp.
Abstract: We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range similar to 15 – 50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector.
|
|
|
Arbelaez, C., Cepedello, R., Helo, J. C., Hirsch, M., & Kovalenko, S. (2022). How many 1-loop neutrino mass models are there? J. High Energy Phys., 08(8), 023–29pp.
Abstract: It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
|
|
|
Aristizabal Sierra, D., De Romeri, V., & Papoulias, D. K. (2022). Consequences of the Dresden-II reactor data for the weak mixing angle and new physics. J. High Energy Phys., 09(9), 076–22pp.
Abstract: The Dresden-II reactor experiment has recently reported a suggestive evidence for the observation of coherent elastic neutrino-nucleus scattering, using a germanium detector. Given the low recoil energy threshold, these data are particularly interesting for a low-energy determination of the weak mixing angle and for the study of new physics leading to spectral distortions at low momentum transfer. Using two hypotheses for the quenching factor, we study the impact of the data on: (i) The weak mixing angle at a renormalization scale of similar to 10 MeV, (ii) neutrino generalized interactions with light mediators, (iii) the sterile neutrino dipole portal. The results for the weak mixing angle show a strong dependence on the quenching factor choice. Although still with large uncertainties, the Dresden-II data provide for the first time a determination of sin(2)theta(W) at such scale using coherent elastic neutrino-nucleus scattering data. Tight upper limits are placed on the light vector, scalar and tensor mediator scenarios. Kinematic constraints implied by the reactor anti-neutrino flux and the ionization energy threshold allow the sterile neutrino dipole portal to produce up-scattering events with sterile neutrino masses up to similar to 8 MeV. In this context, we find that limits are also sensitive to the quenching factor choice, but in both cases competitive with those derived from XENON1T data and more stringent that those derived with COHERENT data, in the same sterile neutrino mass range.
|
|
|
Beltran, R., Bolton, P. D., Deppisch, F. F., Hati, C., & Hirsch, M. (2024). Probing heavy neutrino magnetic moments at the LHC using long-lived particle searches. J. High Energy Phys., 07(7), 153–44pp.
Abstract: We explore long-lived particle (LLP) searches using non-pointing photons at the LHC as a probe for sterile-to-sterile and active-to-sterile transition magnetic dipole moments of sterile neutrinos. We consider heavy sterile neutrinos with masses ranging from a few GeV to several hundreds of GeV. We discuss transition magnetic dipole moments using the Standard Model effective field theory and low-energy effective field theory extended by sterile neutrinos (NRSMEFT and NRLEFT) and also provide a simplified UV-complete model example. LLP searches at the LHC using non-pointing photons will probe sterile-to-sterile dipole moments two orders of magnitude below the current best constraints from LEP, while an unprecedented sensitivity to sterile neutrino mass of about 700 GeV is expected for active-to-sterile dipole moments. For the UV model example with one-loop transition magnetic moments, the searches for charged lepton flavour violating processes in synergy with LLP searches at the LHC can probe new physics at several TeV mass scales and provide valuable insights into the lepton flavour structure of new physics couplings.
|
|
|
Breso-Pla, V., Falkowski, A., Gonzalez-Alonso, M., & Monsalvez-Pozo, K. (2023). EFT analysis of New Physics at COHERENT. J. High Energy Phys., 05(5), 074–53pp.
Abstract: Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.
|
|
|
Candela, P. M., De Romeri, V., Melas, P., Papoulias, D. K., & Saoulidou, N. (2024). Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments. J. High Energy Phys., 10(10), 032–36pp.
Abstract: We investigate the possible production of a MeV-scale sterile fermion through the up-scattering of neutrinos on nuclei and atomic electrons at different facilities. We consider a phenomenological model that adds a new fermion to the particle content of the Standard Model and we allow for all possible Lorentz-invariant non-derivative interactions (scalar, pseudoscalar, vector, axial-vector and tensor) of neutrinos with electrons and first-generation quarks. We first explore the sensitivity of the DUNE experiment to this scenario, by simulating elastic neutrino-electron scattering events in the near detector. We consider both options of a standard and a tau-optimized neutrino beams, and investigate the impact of a mobile detector that can be moved off-axis with respect to the beam. Next, we infer constraints on the typical coupling, new fermion and mediator masses from elastic neutrino-electron scattering events induced by solar neutrinos in two current dark matter direct detection experiments, XENONnT and LZ. Under the assumption that the new mediators couple also to first-generation quarks, we further set constraints on the up-scattering production of the sterile fermion using coherent elastic neutrino-nucleus scattering data from the COHERENT experiment. Moreover, we set additional constraints assuming that the sterile fermion may decay within the detector. We finally compare our results and discuss how these facilities are sensitive to different regions of the relevant parameter space due to kinematics arguments and can hence provide complementary information on the up-scattering production of a sterile fermion.
|
|
|
Candido, A., Garcia, A., Magni, G., Rabemananjara, T., Rojo, J., & Stegeman, R. (2023). Neutrino structure functions from GeV to EeV energies. J. High Energy Phys., 05(5), 149–78pp.
Abstract: The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.
|
|
|
Chu, X. Y., Garani, R., Garcia-Cely, C., & Hambye, T. (2024). Dark matter bound-state formation in the Sun. J. High Energy Phys., 05(5), 045–32pp.
Abstract: The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
|
|
|
Chun, E. J., Cvetic, G., Dev, P. S. B., Drewes, M., Fong, C. S., Garbrecht, B., et al. (2018). Probing leptogenesis. Int. J. Mod. Phys. A, 33(5-6), 1842005–99pp.
Abstract: The focus of this paper lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy W-R, as well as model independently when measuring Delta L = 2 washout processes at the LHC or neutrinoless double beta decay.
|
|