|
n_TOF Collaboration(Tarrio, D. et al), Domingo-Pardo, C., Plag, R., Plompen, A., & Tain, J. L. (2011). High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209. J. Korean Phys. Soc., 59(2), 1904–1907.
Abstract: The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.
|
|
n_TOF Collaboration(Weiss, C. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2015). The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance. Nucl. Instrum. Methods Phys. Res. A, 799, 90–98.
Abstract: At the neutron Lime-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.
|