|
Martin-Luna, P., Bonatto, A., Bontoiu, C., Lei, B. F., Xia, G. X., & Resta-Lopez, J. (2025). Wakefield excitation and stopping power in multi-walled carbon nanotubes: one- and two-fluid model. J. Phys. D, 58(22), 225203–15pp.
Abstract: The motion of charged particles along multi-walled carbon nanotubes (MWCNTs) can induce electromagnetic modes. This wake effect represents an innovative approach for short-wavelength, high-gradient particle acceleration and for producing brilliant radiation sources. This article examines the excitation of wakefields produced by a point-like charge moving parallel to MWCNTs using the linearized hydrodynamic theory. General expressions for the excited longitudinal and transverse wakefields and the stopping power have been derived, relating them to the resonant wavenumbers obtainable from the dispersion relations under the assumption of negligible friction. As the number of walls in MWCNTs increases, they exhibit a richer spectrum of plasmonic excitations, which has been widely studied as a function of the driver velocity in this manuscript. This comprehensive study provides a deeper understanding of the physical phenomena behind plasmonic excitations in MWCNTs, paving the way for potential applications in particle acceleration, nanotechnology, and materials science.
|
|