|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Robustness of braneworld scenarios against tensorial perturbations. Class. Quantum Gravity, 32(21), 215011–10pp.
Abstract: Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
|
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
|