|
Arnalte-Mur, P., Labatie, A., Clerc, N., Martinez, V. J., Starck, J. L., Lachieze-Rey, M., et al. (2012). Wavelet analysis of baryon acoustic structures in the galaxy distribution. Astron. Astrophys., 542, A34–11pp.
Abstract: Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims. The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods. We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Lambda – cold dark matter (Lambda CDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciencies de l'Espai (MICE). Results. We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the “main” catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions. We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells.
|
|
|
Johannesson, G., Ruiz de Austri, R., Vincent, A. C., Moskalenko, I. V., Orlando, E., Porter, T. A., et al. (2016). Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion. Astrophys. J., 824(1), 16–19pp.
Abstract: We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
|
|
|
Norena, J., Verde, L., Jimenez, R., Pena-Garay, C., & Gomez, C. (2012). Cancelling out systematic uncertainties. Mon. Not. Roy. Astron. Soc., 419(2), 1040–1050.
Abstract: We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.
|
|
|
Trotta, R., Johannesson, G., Moskalenko, I. V., Porter, T. A., Ruiz de Austri, R., & Strong, A. W. (2011). Constraints on Cosmic-Ray Propagation Models from a Global Bayesian Analysis. Astrophys. J., 729(2), 106–16pp.
Abstract: Research in many areas of modern physics such as, e. g., indirect searches for dark matter and particle acceleration in supernova remnant shocks rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma-rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions. The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, which uses astrophysical information, and nuclear and particle data as inputs to self-consistently predict CRs, gamma-rays, synchrotron, and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.
|
|