|
Ancilotto, F., Barranco, M., Navarro, J., & Pi, M. (2011). Cavitation of electron bubbles in liquid parahydrogen. Mol. Phys., 109(23-24), 2757–2762.
Abstract: Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH(2). We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows the limitations of this approximation, especially as temperature increases.
|
|
Pi, M., Barranco, M., Navarro, J., & Ancilotto, F. (2012). Nucleation and cavitation in parahydrogen. Chem. Phys., 399, 213–217.
Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.
|