|
AGATA Collaboration(Ralet, D. et al), Gadea, A., & Perez-Vidal, R. M. (2017). Toward lifetime and g factor measurements of short-lived states in the vicinity of Pb-208. Phys. Scr., 92(5), 054004–4pp.
Abstract: The multi-nucleon transfer reaction mechanism was used to produce and study nuclei in the vicinity of 208Pb. This mass region is a test case for the nuclear shell model. The mass identification of the fragments was performed with the large acceptance magnetic spectrometer VAMOS++ coupled to the AGATA gamma-tracking array. This experiment aimed to determine both lifetimes and gyromagnetic ratios of excited states with the Cologne plunger device. The analysis indicates promising results with the possibility to determine several new lifetimes in this region.
|
|
|
Goasduff, A., Valiente-Dobon, J. J., Lunardi, S., Haas, F., Gadea, A., de Angelis, G., et al. (2014). Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA. Nucl. Instrum. Methods Phys. Res. A, 758, 1–3.
Abstract: The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
|
|
|
Pasqualato, G. et al, Gadea, A., & Jurado, M. (2023). An alternative viewpoint on the nuclear structure towards 100Sn: Lifetime measurements in 105Sn. Phys. Lett. B, 845, 138148–7pp.
Abstract: This work aims at presenting an alternative approach to the long standing problem of the B(E2) values in Sn isotopes in the vicinity of the N=Z double-magic nucleus Sn-100, until now predominantly measured with relativistic and intermediate-energy Coulomb excitation reactions. The direct measurement of the lifetime of low-lying excited states in odd-even Sn isotopes provides a new and precise guidance for the theoretical description of the nuclear structure in this region. Lifetime measurements have been performed in Sn-105 for the first time with the coincidence Recoil Distance Doppler Shift technique. The lifetime results for the 7/2(1)(+) first excited state and the 11/2(1)(+) state, 2(+)(Sn-104) circle times nu 1g(7/2) multiplet member, are discussed in comparison with state-of-the-art shell model and mean field calculations, highlighting the crucial contribution of proton excitation across the core of Sn-100. The reduced transition probability B(E2) of the 11/2(1)(+) core-coupled state points out an enhanced staggering with respect to the B(E2; 2(1)(+) -> 0(1)(+)) in the even-mass Sn-104 and Sn-106 isotopes.
|
|
|
Tonev, D. et al, & Gadea, A. (2021). Transition probabilities in P-31 and S-31: A test for isospin symmetry. Phys. Lett. B, 821, 136603–6pp.
Abstract: Excited states in the mirror nuclei P-31 and S-31 were populated in the 1p and 1n exit channels of the reaction Ne-20 + C-12, at a beam energy of 33 MeV. The Ne-20 beam was delivered for the first time by the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. Angular correlations of coincident gamma-rays and Doppler-shift attenuation lifetime measurements were performed using the multi-detector array GASP in conjunction with the EUCLIDES charged particle detector. In the observed B(E1) strengths, the isoscalar component, amounting to 24% of the isovector one, provides strong evidence for breaking of the isospin symmetry in the A = 31 mass region. Self-consistent beyond mean field calculations using Equation of Motion method based on a chiral potential and including two- and three-body forces reproduce well the experimental B(E1) strengths, reinforcing our conclusion. Coherent mixing from higher-lying states involving the Giant Isovector Monopole Resonance accounts well for the effect observed. The breaking of the isospin symmetry originates from the violation of the charge symmetry of the two- and three-body parts of the potential, only related to the Coulomb interaction.
|
|