|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Search for scalar leptoquarks in pp collisions at root s=13TeV with the ATLAS experiment. New J. Phys., 18, 093016–25pp.
Abstract: An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in pp collisions at root s = 13 TeV at the large hadron collider, have been considered. An integrated luminosity of 3.2 fb(-1), corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 and 1050 GeV (1160 and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.
|
|
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). A search for an excited muon decaying to a muon and two jets in pp collisions at root s=8 TeV with the ATLAS detector. New J. Phys., 18, 073021–21pp.
Abstract: Anew search signature for excited leptons is explored. Excited muons are sought in the channel pp -> μmu* -> μμjet jet, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb(-1) of pp collision data at a centre-of-mass energy of root s = 8 TeV taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass m(mu)*. For m(mu)* between 1.3 and 3.0 TeV, the upper limit on sigma B(mu* -> μq (q) over bar) is between 0.6 and 1 fb. Limits on sB are converted to lower bounds on the compositeness scale Lambda. In the limiting case Lambda = m(mu)*, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger mu* masses improve upon previous limits from traditional searches based on the gauge-mediated decay mu* -> μgamma.
|
|