|
Ardu, M., Queiroz, D., & Vives, O. (2025). Asymmetric dark matter in SUSY with approximate R-symmetry. J. Cosmol. Astropart. Phys., 08(8), 013–28pp.
Abstract: We implement the asymmetric dark matter framework, linking the ordinary and dark matter abundances, within a supersymmetric context. We consider a supersymmetric model that respects an approximate U(1)R symmetry, which is broken in such a way that at high temperature the R breaking sector mediate processes in equilibrium, but at the SUSY mass scale, the sparticles asymmetry is frozen. In this framework, the gravitino serves as the dark matter candidate, and its mass is predicted to be similar to 10 GeV to match the observed relic abundance. We identify several realistic spectra; however, the requirement for the Next-to-Lightest Supersymmetric Particle (NLSP) to decay into the gravitino before Big Bang Nucleosynthesis constrains the viable spectrum to masses above 2 TeV.
|
|
|
Aristizabal Sierra, D., Tortola, M., Valle, J. W. F., & Vicente, A. (2014). Leptogenesis with a dynamical seesaw scale. J. Cosmol. Astropart. Phys., 07(7), 052–20pp.
Abstract: In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
|
|
|
Barenboim, G., & Park, W. I. (2017). A full picture of large lepton number asymmetries of the Universe. J. Cosmol. Astropart. Phys., 04(4), 048–10pp.
Abstract: A large lepton number asymmetry of O(0.1-1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10(-2) -10(2)) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m(phi) greater than or similar to O(10) TeV and phi(0) greater than or similar to O(10(14)) GeV, respectively.
|
|
|
Bernal, N., Colucci, S., Josse-Michaux, F. X., Racker, J., & Ubaldi, L. (2013). On baryogenesis from dark matter annihilation. J. Cosmol. Astropart. Phys., 10(10), 035–30pp.
Abstract: We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.
|
|
|
Bhattacharya, S., Mondal, N., Roshan, R., & Vatsyayan, D. (2024). Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking. J. Cosmol. Astropart. Phys., 06(6), 029–25pp.
Abstract: We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.
|
|