|
Catumba, G., Ramos, A., & Zaldivar, B. (2025). Stochastic automatic differentiation for Monte Carlo processes. Comput. Phys. Commun., 307, 109396–13pp.
Abstract: Monte Carlo methods represent a cornerstone of computer science. They allow sampling high dimensional distribution functions in an efficient way. In this paper we consider the extension of Automatic Differentiation (AD) techniques to Monte Carlo processes, addressing the problem of obtaining derivatives (and in general, the Taylor series) of expectation values. Borrowing ideas from the lattice field theory community, we examine two approaches. One is based on reweighting while the other represents an extension of the Hamiltonian approach typically used by the Hybrid Monte Carlo (HMC) and similar algorithms. We show that the Hamiltonian approach can be understood as a change of variables of the reweighting approach, resulting in much reduced variances of the coefficients of the Taylor series. This work opens the door to finding other variance reduction techniques for derivatives of expectation values.
|
|
|
Cui, Z. F., Zhang, J. L., Binosi, D., De Soto, F., Mezrag, C., Papavassiliou, J., et al. (2020). Effective charge from lattice QCD. Chin. Phys. C, 44(8), 083102–10pp.
Abstract: Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD 's renormalisation-group-invariant process-independent effective charge, (alpha) over cap (k(2)). Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, m(0) = 0.43(1) GeV, this coupling saturates at infrared momenta: (alpha) over cap/pi = 0.97(4). Amongst other things: (alpha) over cap (k(2)) is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by (alpha) over cap (k(2)) suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.
|
|
|
Del Debbio, L., & Ramos, A. (2021). Lattice determinations of the strong coupling. Phys. Rep.-Rev. Sec. Phys. Lett., 920, 1–71.
Abstract: Lattice QCD has reached a mature status. State of the art lattice computations include u, d, s (and even the c) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology. Crown Copyright & nbsp;(c) 2021 Published by Elsevier B.V. All rights reserved.
|
|
|
Jay, G., Arnault, P., & Debbasch, F. (2021). Dirac quantum walks with conserved angular momentum. Quantum Stud. Math. Found., 8, 419–430.
Abstract: A quantum walk (QW) simulating the flat (1+2)D Dirac equation on a spatial polar grid is constructed. Because fermions are represented by spinors, which do not constitute a representation of the rotation group SO(3), but rather of its double cover SU(2), the QW can only be defined globally on an extended spacetime where the polar angle extends from 0 to 4 pi. The coupling of the QW with arbitrary electromagnetic fields is also presented. Finally, the cylindrical relativistic Landau levels of the Dirac equation are computed explicitly and simulated by the QW.
|
|