| 
		
		
	 | 
	
		Aebischer, J. et al, & Passemar, E. (2025). Kaon physics: a cornerstone for future discoveries. J. Phys. G, 52(10), 100501–18pp.
		
		
			Abstract: The kaon physics programme, long heralded as a cutting-edge frontier by the European Strategy for Particle Physics, continues to stand at the intersection of discovery and innovation in high-energy physics (HEP). With its unparalleled capacity to explore new physics at the multi-TeV scale, kaon research is poised to unveil phenomena that could reshape our understanding of the Universe. This document highlights the compelling physics case, with emphasis on exciting new opportunities for advancing kaon physics not only in Europe but also on a global stage. As an important player in the future of HEP, the kaon programme promises to drive transformative breakthroughs, inviting exploration at the forefront of scientific discovery. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Bernabeu, J., Di Domenico, A., & Villanueva-Perez, P. (2015). Probing CPT in transitions with entangled neutral kaons. J. High Energy Phys., 10(10), 139–19pp.
		
			 
		 
		
			Abstract: In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a phi-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the pi and 3 pi(0) decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating R delta parameter in the mass matrix of K-0 – (K) over bar (0), a genuine CPT violating effect independent of Delta Gamma and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the Delta S = Delta Q rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA Phi NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of O (10(-3)) on the newly proposed observable quantities. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Cirigliano, V., Gisbert, H., Pich, A., & Rodriguez-Sanchez, A. (2020). Isospin-violating contributions to epsilon '/epsilon. J. High Energy Phys., 02(2), 032–44pp.
		
		
			Abstract: The known isospin-breaking contributions to the K -> pi pi amplitudes are reanalyzed, taking into account our current understanding of the quark masses and the relevant non-perturbative inputs. We present a complete numerical reappraisal of the direct CP-violating ratio is an element of(')/is an element of, where these corrections play a quite significant role. We obtain the Standard Model prediction Re (is an element of(')/is an element of) = (14 +/- 5) <bold> </bold>10(-4), which is in very good agreement with the measured ratio. The uncertainty, which has been estimated conservatively, is dominated by our current ignorance about 1/N-C-suppressed contributions to some relevant chiral-perturbation-theory low-energy constants. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Hansen, M. T., Romero-Lopez, F., & Sharpe, S. R. (2021). Decay amplitudes to three hadrons from finite-volume matrix elements. J. High Energy Phys., 04(4), 113–44pp.
		
			 
		 
		
			Abstract: We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		KLOE-2 Collaboration(Babusci, D. et al), & Bernabeu, J. (2023). Direct tests of T, CP, CPT symmetries in transitions of neutral K mesons with the KLOE experiment. Phys. Lett. B, 845, 138164–11pp.
		
		
			Abstract: Tests of the T, CP and CPT symmetries in the neutral kaon system are performed by the direct comparison of the probabilities of a kaon transition process to its symmetry-conjugate. The exchange of in and out states required for a genuine test involving an antiunitary transformation implied by time-reversal is implemented exploiting the entanglement of K0K0 pairs produced at a 0 -factory.A data sample collected by the KLOE experiment at DAONE corresponding to an integrated luminosity of about 1.7 fb-1 is analysed to study the At distributions of the 0 -> KSKL -> pi+pi- pi +/- e -/+ v and 0 -> KSKL -> pi +/- e -/+ v3 pi 0 processes, with At the difference of the kaon decay times. A comparison of the measured At distributions in the asymptotic region At ⠅ iS allows to test for the first time T and CPT symmetries in kaon transitions with a precision of few percent, and to observe CP violation with this novel method. 
			
			
		 
	 | 
	
		   
		 
		
	 |