|
Olmo, G. J., & Rubiera-Garcia, D. (2020). Junction conditions in Palatini f(R) gravity. Class. Quantum Gravity, 37(21), 215002–11pp.
Abstract: We work out the junction conditions for f(R) gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of general relativity and from their metric f(R) counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini f(R) framework.
|
|
Olmo, G. J., & Rubiera-Garcia, D. (2022). Some recent results on Ricci-based gravity theories. Int. J. Mod. Phys. D, 31, 2240012–15pp.
Abstract: In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.
|