|
Albaladejo, M., Guo, F. K., Hanhart, C., Meissner, U. G., Nieves, J., Nogga, A., et al. (2017). Note on X(3872) production at hadron colliders and its molecular structure. Chin. Phys. C, 41(12), 121001–3pp.
Abstract: The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
|
|
Baru, V., Dong, X. K., Du, M. L., Filin, A., Guo, F. K., Hanhart, C., et al. (2022). Effective range expansion for narrow near-threshold resonances. Phys. Lett. B, 833, 137290–7pp.
Abstract: We discuss some general features of the effective range expansion, the content of its parameters with respect to the nature of the pertinent near-threshold states and the necessary modifications in the presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we analyse the properties of the chi(c1)(3872) and T-cc(+) states supporting the claim that these exotic states have a predominantly molecular nature.
|
|
Ji, T., Dong, X. K., Albaladejo, M., Du, M. L., Guo, F. K., Nieves, J., et al. (2023). Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV. Sci. Bull., 68(7), 688–697.
Abstract: We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.
|