|
AGATA Collaboration, Doncel, M., Quintana, B., Gadea, A., Recchia, F., & Farnea, E. (2011). Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA. Nucl. Instrum. Methods Phys. Res. A, 648, S131–S134.
Abstract: In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the gamma-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1 pi solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between gamma sources placed at different locations.
|
|
AGATA Collaboration, Doncel, M., Recchia, F., Quintana, B., Gadea, A., & Farnea, E. (2010). Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector. Nucl. Instrum. Methods Phys. Res. A, 622(3), 614–618.
Abstract: The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.
|
|
Barrientos, D., Bellato, M., Bazzacco, D., Bortolato, D., Cocconi, P., Gadea, A., et al. (2015). Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array. IEEE Trans. Nucl. Sci., 62(6), 3134–3139.
Abstract: In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.
|
|
Korichi, A., Lauritsen, T., Wilson, A. N., Dudouet, J., Clement, E., Lalovic, N., et al. (2017). Performance of a gamma-ray tracking array: Characterizing the AGATA array using a Co-60 source. Nucl. Instrum. Methods Phys. Res. A, 872, 80–86.
Abstract: The AGATA (Advanced GAmma Tracking Array) tracking detector is being designed to far surpass the performance of the previous generation, Compton-suppressed arrays. In this paper, a characterization of AGATA is provided based on data from the second GSI campaign. Emphasis is placed on the proper corrections required to extract the absolute photopeak efficiency and peak-to-total ratio. The performance after tracking is extracted and GEANT4 simulations are used both to understand the results and to scale the measurements up to predicted values for the full 4 pi implementation of the device.
|
|
Lauritsen, T. et al, & Perez-Vidal, R. M. (2016). Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source. Nucl. Instrum. Methods Phys. Res. A, 836, 46–56.
Abstract: In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA.
|