|
Etxebeste, A., Dauvergne, D., Fontana, M., Letang, J. M., Llosa, G., Muñoz, E., et al. (2020). CCMod: a GATE module for Compton camera imaging simulation. Phys. Med. Biol., 65(5), 055004–17pp.
Abstract: Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.
|
|
Lerendegui-Marco, J., Babiano-Suarez, V., Balibrea-Correa, J., Caballero, L., Calvo, D., Ladarescu, I., et al. (2024). Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections. EPJ Tech. Instrum., 11(1), 2–17pp.
Abstract: This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.
|
|
Lerendegui-Marco, J., Cisterna, G., Hallam, J., Babiano-Suarez, V., Balibrea-Correa, J., Calvo, D., et al. (2025). Imaging neutrons with a position-sensitive monolithic CLYC detector. Nucl. Instrum. Methods Phys. Res. A, 1079, 170594–12pp.
Abstract: In this work, we have developed and characterized a position-sensitive CLYC detector that acts as the neutron imaging layer and y-ray Compton scatterer of the novel dual Gamma-ray and Neutron Vision (GN-Vision) system, which aims at simultaneously obtaining information about the spatial origin of y-ray and neutron sources. We first investigated the performance of two large 50 x 50 mm2 monolithic CLYC crystals, 8 and 13 mm thick respectively, coupled to a pixelated SiPM in terms of energy resolution and neutron-gamma discrimination. The response of two different 95% 6Li-enriched CLYC detectors coupled to an array of 8 x 8 SiPMs was studied in comparison to the results of a conventional photo-multiplier tube. An energy resolution of about 6% with PMT and 8% with SiPMs for the 137Cs peak and a figure of merit of 3-4 for the neutron-gamma discrimination have been obtained. The spatial response of the CLYC-SiPM detector to y-rays and neutrons has also been characterized using charge modulation-based multiplexing techniques based on a diode-coupled charge division circuit. Average resolutions close to 5 mm FWHM with good linearity are obtained in the transverse crystal plane. Last, this work presents the first proof-of-concept experiments of the neutron imaging capability using a neutron pinhole collimator attached to the developed position sensitive CLYC detector.
|
|
Lerendegui-Marco, J., Hallam, J., Cisterna, G., Sanchis-Molto, A., Balibrea-Correa, J., Babiano-Suarez, V., et al. (2025). First experimental results and optimization study of the portable neutron-gamma imager GN-Vision. Appl. Radiat. Isot., 224, 111826–13pp.
Abstract: GN-Vision is a compact, dual-modality imaging device designed to simultaneously localize the spatial origin of y-ray and slow neutron sources, with potential applications in nuclear safety, security, and hadron therapy. The system utilizes two position-sensitive detection planes, combining Compton imaging techniques for yray visualization with passive collimation for imaging slow and thermal neutrons (energies below 100 eV). This paper presents the first experimental outcomes from the initial GN-Vision prototype, focused on the development of its neutron imaging capabilities. Following this experimental assessment, we explore the device's performance potential and discuss several Monte Carlo simulation-based optimizations aimed at refining the neutron collimation system. These optimizations seek to improve real-time imaging efficiency and cost-effectiveness, enhancing GN-Vision's applicability for future practical deployments.
|