|
AGATA Collaboration, Farnea, E., Recchia, F., Bazzacco, D., Kroll, T., Podolyak, Z., et al. (2010). Conceptual design and Monte Carlo simulations of the AGATA array. Nucl. Instrum. Methods Phys. Res. A, 621(1-3), 331–343.
Abstract: The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and gamma-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.
|
|
AGATA Collaboration(Akkoyun, S. et al), Algora, A., Barrientos, D., Domingo-Pardo, C., Egea, F. J., Gadea, A., et al. (2012). AGATA-Advanced GAmma Tracking Array. Nucl. Instrum. Methods Phys. Res. A, 668, 26–58.
Abstract: The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
|
|
AGATA Collaboration(Clement, E. et al), Domingo-Pardo, C., Gadea, A., Perez-Vidal, R. M., & Civera, J. V. (2017). Conceptual design of the AGATA 1 pi array at GANIL. Nucl. Instrum. Methods Phys. Res. A, 855, 1–12.
Abstract: The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented.
|
|
AGATA Collaboration(Crespi, F. C. L. et al), & Gadea, A. (2013). Response of AGATA segmented HPGe detectors to gamma rays up to 15.1 MeV. Nucl. Instrum. Methods Phys. Res. A, 705, 47–54.
Abstract: The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(B-11,n gamma)C-12 at E-beam=19.1 MeV, while gamma rays between 2 and 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%.Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation caused by n-capture in Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape analysis is discussed.
|
|
AGATA Collaboration(Soderstrom, P. A. et al), & Gadea, A. (2011). Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors. Nucl. Instrum. Methods Phys. Res. A, 638(1), 96–109.
Abstract: The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.
|
|
AGATA Collaboration(Valiente-Dobon, J. J. et al), Perez-Vidal, R. M., Blasco Miquel, J., Civera, J. V., & Gadea, A. (2023). Conceptual design of the AGATA 2 pi array at LNL. Nucl. Instrum. Methods Phys. Res. A, 1049, 168040–14pp.
Abstract: The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
|
|
Korichi, A., Lauritsen, T., Wilson, A. N., Dudouet, J., Clement, E., Lalovic, N., et al. (2017). Performance of a gamma-ray tracking array: Characterizing the AGATA array using a Co-60 source. Nucl. Instrum. Methods Phys. Res. A, 872, 80–86.
Abstract: The AGATA (Advanced GAmma Tracking Array) tracking detector is being designed to far surpass the performance of the previous generation, Compton-suppressed arrays. In this paper, a characterization of AGATA is provided based on data from the second GSI campaign. Emphasis is placed on the proper corrections required to extract the absolute photopeak efficiency and peak-to-total ratio. The performance after tracking is extracted and GEANT4 simulations are used both to understand the results and to scale the measurements up to predicted values for the full 4 pi implementation of the device.
|
|
Lalovic, N., Louchart, C., Michelagnoli, C., Perez-Vidal, R. M., Ralet, D., Gerl, J., et al. (2016). Performance of the AGATA gamma-ray spectrometer in the PreSPEC set-up at GSI. Nucl. Instrum. Methods Phys. Res. A, 806, 258–266.
Abstract: In contemporary nuclear physics, the European Advanced GAmma Tracking Array (AGATA) represents a crucial detection system for cutting-edge nuclear structure studies. AGATA consists of highly segmented high-purity germanium crystals and uses the pulse-shape analysis technique to determine both the position and the energy of the y-ray interaction points in the crystals. It is the tracking algorithms that deploy this information and enable insight into the sequence of interactions, providing information on the full or partial absorption of the 7 ray. A series of dedicated performance measurements for an AGATA set-up comprising 21 crystals is described. This set-up was used within the recent PreSPEC-AGATA experimental campaign at the GSI Helmholtzzentrum fur Schwerionenforschung. Using the radioactive sources Co-56, Co-60 and Eu-152, absolute and normalized efficiencies and the peak-to-total of the array were measured. These quantities are discussed using different data analysis procedures. The quality of the pulse-shape analysis and the tracking algorithm are evaluated. The agreement between the experimental data and the Geant4 simulations is also investigated.
|
|
Lauritsen, T. et al, & Perez-Vidal, R. M. (2016). Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source. Nucl. Instrum. Methods Phys. Res. A, 836, 46–56.
Abstract: In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA.
|
|
Ljungvall, J., Perez-Vidal, R. M., Lopez-Martens, A., Michelagnoli, C., Clement, E., Dudouet, J., et al. (2020). Performance of the Advanced GAmma Tracking Array at GANIL. Nucl. Instrum. Methods Phys. Res. A, 955, 163297–13pp.
Abstract: The performance of the Advanced GAmma Tracking Array (AGATA) at GANIL is discussed, on the basis of the analysis of source and in-beam data taken with up to 30 segmented crystals. Data processing is described in detail. The performance of individual detectors are shown. The efficiency of the individual detectors as well as the efficiency after gamma-ray tracking are discussed. Recent developments of gamma-ray tracking are also presented. The experimentally achieved peak-to-total is compared with simulations showing the impact of back-scattered gamma rays on the peak-to-total in a gamma-ray tracking array. An estimate of the achieved position resolution using the Doppler broadening of in-beam data is also given. Angular correlations from source measurements are shown together with different methods to take into account the effects of gamma-ray tracking on the normalization of the angular correlations.
|