|
Bordes, J., Chan, H. M., & Tsou, S. T. (2021). delta(CP) for leptons and a new take on CP physics with the FSM. Int. J. Mod. Phys. A, 36, 2150236–22pp.
Abstract: A bonus of the framed Standard Model (FSM), constructed initially to explain the mass and mixing patterns of quarks and leptons, is a solution (without axions) of the strong CP problem by cancelling the theta-angle term theta(I) Tr(H-mu v H-mu v*) in coloura by a chiral transformation on a quark zero mode which is inherent in FSM, and produces thereby a CP-violating phase in the CKM matrix similar in size to what is observed.' Extending here to flavour, one finds that there are two terms proportional to Tr(G(mu v) G(mu v)*): (a) in the action from flavour instantons with unknown coefficient, say theta(I)', (b) induced by the above FSM solution to the strong CP-problem with therefore known coefficient theta(C)'. Both terms can be cancelled in the FSM by a chiral transformation on the lepton zero mode to give a Jarlskog invariant J' in the PMNS matrix for leptons of order 10(-2), as is hinted by the experiment. But if, as suggested in Ref. 2, the term theta(I)' is to be cancelled by a chiral transformation in the predicted hidden sector to solve the strong CP problem therein, leaving only the term theta(C)' to be cancelled by the chiral transformation on leptons, then the following prediction results: J' similar to -0.012 (delta(CP)'similar to (1.11)pi) which is (i) of the right order, (ii) of the right sign and (iii) in the range favoured by the present experiment. Together with the earlier result for quarks, this offers an attractive unified treatment of all known CP physics.
|
|
|
Bordes, J., Chan, H. M., & Tsou, S. T. (2021). Unified FSM treatment of CP physics extended to hidden sector giving (i) delta(CP) for leptons as prediction, (ii) new hints on the material content of the universe. Int. J. Mod. Phys. A, 36, 2150238–19pp.
Abstract: A unified treatment of CP physics for quarks and leptons in the framed Standard Model (FSM) is extended to include the predicted hidden sector giving as consequences: (i) that an earlier part estimate of the Jarlskog invariant J' for leptons is turned into a prediction for its actual value, i.e. J' similar to -0.012 (delta(CP)' similar to 1.11 pi), which is of the right order of magnitude, of the right sign, and in the range of values favoured by the present experiment, (ii) some novel twists to the effects of CP-violation on the material content of the universe.
|
|
|
Bordes, J., Chan, H. M., & Tsou, S. T. (2023). A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology. Int. J. Mod. Phys. A, 38(25), 2350124–32pp.
Abstract: The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.
|
|
|
Bordes, J., Chan, H. M., & Tsou, S. T. (2023). Search for new physics in semileptonic decays of K and B as implied by the g-2 anomaly in FSM. Int. J. Mod. Phys. A, 38, 2350177–24pp.
Abstract: The framed standard model (FSM), constructed to explain, with some success, why there should be three and apparently only three generations of quarks and leptons in nature falling into a hierarchical mass and mixing pattern,(10) suggests also, among other things, a scalar boson U, with mass around 17 MeV and small couplings to quarks and leptons,(11) which might explain(9) the g – 2 anomaly reported in experiment.(12) The U arises in FSM initially as a state in the predicted “hidden sector” with mass around 17 MeV, which mixes with the standard model (SM) Higgs h(W), acquiring thereby a coupling to quarks and leptons and a mass just below 17 MeV. The initial purpose of this paper is to check whether this proposal is compatible with experiment on semileptonic decays of Ks and Bs where the U can also appear. The answer to this we find is affirmative, in that the contribution of U to new physics as calculated in the FSM remains within the experimental bounds, but only if m(U) lies within a narrow range just below the unmixed mass. As a result from this, one has an estimate m(U) similar to 15-17 MeV for the mass of U, and from some further considerations the estimate Gamma(U) similar to 0.02 eV for its width, both of which may be useful for an eventual search for it in experiment. If found, it will be, for the FSM, not just the discovery of a predicted new particle, but the opening of a window into a whole “hidden sector” containing at least some, perhaps even the bulk, of the dark matter in the universe.
|
|
|
Bordes, J., Hong-Mo, C., & Tsun, T. S. (2022). Resolving an ambiguity of Higgs couplings in the FSM, greatly improving thereby the model's predictive range and prospects. Int. J. Mod. Phys. A, 37(27), 2250167–10pp.
Abstract: We show that, after resolving what was thought to be an ambiguity in the Higgs coupling, the FSM gives, apart from two extra terms (i) and (ii) to be specified below, an effective action in the standard sector which has the same form as the SM action, the two differing only in the values of the mass and mixing parameters of quarks and leptons which the SM takes as Finputs from experiment while the FSM obtains as a result of a fit with a few parameters. Hence, to the accuracy that these two sets of parameters agree in value, and they do to a good extent as shown in earlier work,' the FSM should give the same result as the SM in all the circumstances where the latter has been successfully applied, except for the noted modifications due to (i) and (ii). If so, it would be a big step forward for the FSM. The correction terms are: (i) a mixing between the SM's gamma – Z with a new vector boson in the hidden sector, (ii) a mixing between the standard Higgs with a new scalar boson also in the hidden sector. And these have been shown a few years back to lead to (i') an enhancement of the W mass over the SM value,(2) – and (ii') effects consistent with the g – 2 and some other anomalies,(3) precisely the two deviations from the SM reported by experiments(4,5) recently much in the news.
|
|