|
Ardu, M., & Marcano, X. (2024). Completing the one-loop νSMEFT renormalization group evolution. J. High Energy Phys., 10(10), 212–23pp.
Abstract: In this work we consider the Standard Model Effective Field Theory extended with right-handed neutrinos, the nu SMEFT, and calculate the full set of one-loop anomalous dimensions that are proportional to Yukawa couplings. These contributions are particularly relevant when symmetry-protected low scale seesaw models are embeded in the SMEFT, since large neutrino Yukawa couplings are expected. By combining our results with the already available gauge anomalous dimensions, we provide the complete set of one-loop renormalization group evolution equations for the dimension six nu SMEFT. As a possible phenomenological implication of our results, we discuss the sensitivity of lepton flavor-violating observables to nu SMEFT operators, focusing on the more sensitive μ-> e transitions.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2017). Search for top quark decays t -> qH,with H -> gamma gamma, in root s=13 TeV pp collisions using the ATLAS detector. J. High Energy Phys., 10(10), 129–43pp.
Abstract: This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (q = c; u) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb(-1) at root s = 13TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into qH and the other decays into bW. Both the hadronic and leptonic decay modes of the W boson are used. No significant excess is observed and an upper limit is set on the t -> cH branching ratio of 2 : 2 x 10(-3) at the 95% confidence level, while the expected limit in the absence of signal is 1 : 6 x 10(-3). The corresponding limit on the tcH coupling is 0.090 at the 95% confidence level. The observed upper limit on the t -> uH branching ratio is 2 : 4 x 10(-3).
|
|
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2023). Search for lepton-flavour violation in high-mass dilepton final states using 139 fb-1 of pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 10(10), 082–50pp.
Abstract: A search is performed for a heavy particle decaying into different-flavour, dilepton final states, using 139 fb(-1) of proton-proton collision data at root s = 13TeV collected in 2015-2018 by the ATLAS detector at the Large Hadron Collider. Final states with electrons, muons and hadronically decaying tau leptons are considered (e mu, e tau or μtau). No significant excess over the Standard Model predictions is observed. Upper limits on the production cross-section are set as a function of the mass of a Z' boson, a supersymmetric tau-sneutrino, and a quantum black-hole. The observed 95% CL lower mass limits obtained on a typical benchmark model Z' boson are 5.0TeV (e mu), 4.0TeV (e tau), and 3.9TeV (mu tau), respectively.
|
|
|
ATLAS Collaboration(Aad, G. et al), Akiot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2023). Search for flavour-changing neutral tqH interactions with H → γγ in pp collisions at √s=13 TeV using the ATLAS detector. J. High Energy Phys., 12(12), 195–53pp.
Abstract: A search for flavour-changing neutral interactions involving the top quark, the Higgs boson and an up-type quark q ( q = c, u) is presented. The proton-proton collision data set used, with an integrated luminosity of 139 fb(-1), was collected at root s = 13TeV by the ATLAS experiment at the Large Hadron Collider. Both the decay process t -> qH in tt production and the production process pp. tH, with the Higgs boson decaying into two photons, are investigated. No significant excess is observed and upper limits are set on the t. cH and the t. uH branching ratios of 4.3x10(-4) and 3.8x10(-4), respectively, at the 95% confidence level, while the expected limits in the absence of signal are 4.7x10(-4) and 3.9x10(-4). Combining this search with ATLAS searches in the H. t+ t- and H. b <overline> b final states yields observed (expected) upper limits on the t -> cH branching ratio of 5.8 x 10(-4) (3.0 x 10(-4)) at the 95% confidence level. The corresponding observed (expected) upper limit on the t -> uH branching ratio is 4.0 x 10(-4) (2.4 x 10(-4)).
|
|
|
ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Escobar, C., et al. (2012). Measurements of the electron and muon inclusive cross-sections in proton-proton collisions at root s=7 TeV with the ATLAS detector. Phys. Lett. B, 707(5), 438–458.
Abstract: This Letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of p(T) in the range 4 < p(T) < 100 GeV and within pseudorapidity vertical bar eta vertical bar < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < p(T) < 26 GeV and within vertical bar eta vertical bar < 2.0, excluding 1.37 < vertical bar eta vertical bar < 1.52. Integrated luminosities of 1.3 pb(-1) and 1.4 pb(-1) are used for the electron and muon measurements, respectively. After subtraction of the W/Z/gamma* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-p(T) resummation, and to be sensitive to the effects of NLL resummation.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cantero, J., et al. (2023). Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of tau-leptons in pp collisions at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 06(6), 155–57pp.
Abstract: A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a tau-lepton pair (H -> tau(+)tau(-)) is presented. The search is based on a dataset of pp collisions at root s = 13 TeV that corresponds to an integrated luminosity of 139 fb(-1) recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp -> tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying tau-lepton candidates (tau(had)) or at least one tau(had) with an additional lepton (e, mu), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3 sigma above the expected SM background, and 95% CL upper limits on the t -> qH branching ratios are derived. The observed (expected) 95% CL upper limits set on the t -> cH and t -> uH branching ratios are 9.4x10(-4)(4.8(-1.4)(+2.2) x 10(-4)) and 6.9x10(-4) (3.5(-1.0)(+1.5) x10(-4)), respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are C-c phi < 1.35 (0.97) and C-u phi < 1.16 (0.82).
|
|
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., Fiorini, L., et al. (2012). A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at root s=7 TeV. J. High Energy Phys., 09(9), 139–37pp.
Abstract: A search for flavour changing neutral current (FCNC) processes in top-quark decays by the ATLAS Collaboration is presented. Data collected from pp collisions at the LHC at a centre-of-mass energy of root s = 7 TeV during 2011, corresponding to an integrated luminosity of 2.1 fb(-1), were used. A search was performed for top-quark pair-production events, with one top quark decaying through the t -> Zq FCNC (q = u, c) channel, and the other through the Standard Model dominant mode t -> Wb. Only the decays of the Z boson to charged leptons and leptonic W-boson decays were considered as signal. Consequently, the final-state topology is characterised by the presence of three isolated charged leptons, at least two jets and missing transverse momentum from the undetected neutrino. No evidence for an FCNC signal was found. An upper limit on the t -> Zq branching ratio of BR(t -> Zq) < 0.73% is set at the 95% confidence level.
|
|
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., Fiorini, L., et al. (2012). Measurement of the b-hadron production cross section using decays to D*(+)mu X- final states in pp collisions at root s=7 TeV with the ATLAS detector. Nucl. Phys. B, 864(3), 341–381.
Abstract: The b-hadron production cross section is measured with the ATLAS detector in pp collisions at root s = 7 TeV, using 3.3 pb(-1) of integrated luminosity, collected during the 2010 LHC run. The b-hadrons are selected by partially reconstructing D*(+)mu X- final states. Differential cross sections are measured as functions of the transverse momentum and pseudorapidity. The measured production cross section for a b-hadron with p(T) > 9 GeV and vertical bar eta vertical bar < 2.5 is 32.7 +/- 0.8(stat.)(-6.8)(+4.5)(syst.) μb, higher than the next-to-leading-order QCD predictions but consistent within the experimental and theoretical uncertainties.
|
|
|
Bartl, A., Eberl, H., Herrmann, B., Hidaka, K., Majerotto, W., & Porod, W. (2011). Impact of squark generation mixing on the search for squarks decaying into fermions at LHC. Phys. Lett. B, 698(5), 380–388.
Abstract: We study the effect of squark generation mixing on squark production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks (u) over bar (1.2) can have large branching ratios for the decays into c (chi) over bar (0)(1) and t (chi) over bar (0)(1) at the same time due to squark generation mixing, leading to QFV signals 'pp -> c (t) over bar (t (c) over bar) + missing-E-T + X' with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
|
|
|
Beltran, R., Bolton, P. D., Deppisch, F. F., Hati, C., & Hirsch, M. (2024). Probing heavy neutrino magnetic moments at the LHC using long-lived particle searches. J. High Energy Phys., 07(7), 153–44pp.
Abstract: We explore long-lived particle (LLP) searches using non-pointing photons at the LHC as a probe for sterile-to-sterile and active-to-sterile transition magnetic dipole moments of sterile neutrinos. We consider heavy sterile neutrinos with masses ranging from a few GeV to several hundreds of GeV. We discuss transition magnetic dipole moments using the Standard Model effective field theory and low-energy effective field theory extended by sterile neutrinos (NRSMEFT and NRLEFT) and also provide a simplified UV-complete model example. LLP searches at the LHC using non-pointing photons will probe sterile-to-sterile dipole moments two orders of magnitude below the current best constraints from LEP, while an unprecedented sensitivity to sterile neutrino mass of about 700 GeV is expected for active-to-sterile dipole moments. For the UV model example with one-loop transition magnetic moments, the searches for charged lepton flavour violating processes in synergy with LLP searches at the LHC can probe new physics at several TeV mass scales and provide valuable insights into the lepton flavour structure of new physics couplings.
|
|