|
Baker, M. J., Bordes, J., Hong-Mo, C., & Tsun, T. S. (2012). Developing the Framed Standard Model. Int. J. Mod. Phys. A, 27(17), 1250087–45pp.
Abstract: The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.
|
|
Baker, M. J., Bordes, J., Hong-Mo, C., & Tsun, T. S. (2013). A comprehensive mechanism reproducing the mass and mixing parameters of quarks and leptons. Int. J. Mod. Phys. A, 28(16), 1350070–29pp.
Abstract: It is shown that if, from the starting point of a universal rank-one mass matrix long favored by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only six real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles theta(12), theta(13), theta(23) in nu-oscillation, and the masses m(c), m(mu), m(e)) agree well with experiment, mostly to within experimental errors; four others (m(s), m(u), m(d), m(nu 2)), the experimental values for which can only be inferred, agree reasonably well; while two others (m(nu 1), delta(CP) for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass m(nu R) and (ii) the strong CP angle theta inherent in QCD. One notes in particular that the output value for sin(2) 2 theta(13) from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit two new testable constraints: (i) that theta(23) must depart from its “maximal” value: sin(2) 2 theta(23) similar to 0.935 +/- 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only vertical bar sin delta(CP)vertical bar <= 0.31 if not vanishing altogether.
|