|
ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Escobar, C., et al. (2012). Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC. Phys. Lett. B, 709(4-5), 322–340.
Abstract: A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb(-1) of proton-proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.
|
|
|
Bernal, N., Donini, A., Folgado, M. G., & Rius, N. (2021). FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions. J. High Energy Phys., 04(4), 061–29pp.
Abstract: We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.
|
|
|
Flores, M. M., Kim, J. S., Rolbiecki, K., & Ruiz de Austri, R. (2023). Updated LHC bounds on MUED after run 2. Int. J. Mod. Phys. A, 38(1), 2350002–14pp.
Abstract: We present updated LHC limits on the minimal universal extra dimensions (MUEDs) model from the Run 2 searches. We scan the parameter space against a number of searches implemented in the public code CheckMATE and derive up-to-date limits on the MUED parameter space from 13TeV searches. The strongest constraints come from a search dedicated to squarks and gluinos with one isolated lepton, jets and missing transverse energy. In the procedure, we take into account initial state radiation and stress its importance in the MUED searches, which is not always appreciated.
|
|
|
Lineros, R. A., & Pereira dos Santos, F. A. (2014). Inert scalar dark matter in an extra dimension inspired model. J. Cosmol. Astropart. Phys., 10(10), 059–17pp.
Abstract: In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of an real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.
|
|
|
Mitsou, V. A. (2013). Shedding light on dark matter at colliders. Int. J. Mod. Phys. A, 28(31), 1330052–34pp.
Abstract: Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark matter signatures at the Large Hadron Collider, also discussing related prospects in future e(+)e(-) colliders.
|
|
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., King, M., Mitsou, V. A., Vento, V., et al. (2014). The physics programme of the MoEDAL experiment at the LHC. Int. J. Mod. Phys. A, 29(23), 1430050–91pp.
Abstract: The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.
|
|