|
|
ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Escobar, C., et al. (2012). Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC. Phys. Lett. B, 709(4-5), 322–340.
Abstract: A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb(-1) of proton-proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.
|
|
|
|
Bernal, N., Donini, A., Folgado, M. G., & Rius, N. (2021). FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions. J. High Energy Phys., 04(4), 061–29pp.
Abstract: We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.
|
|
|
|
Donini, A., Folgado, M. G., Herrero-Garcia, J., Landini, G., Muñoz-Ovalle, A., & Rius, N. (2025). Dark Matter in an evanescent three-brane Randall-Sundrum scenario. J. High Energy Phys., 11(11), 037–42pp.
Abstract: Apart from its gravitational interactions, dark matter (DM) has remained so far elusive in laboratory searches. One possible explanation is that the relevant interactions to explain its relic abundance are mainly gravitational. In this work we consider an extra-dimensional Randall-Sundrum scenario with a TeV-PeV IR brane, where the Standard Model is located, and a GeV-TeV deep IR (DIR) one, where the DM lies. When the curvatures of the bulk to the left and right of the IR brane are very similar, the tension of the IR brane is significantly smaller than that of the other two branes, and therefore we term it “evanescent”. In this setup, the relic abundance of DM arises from the freeze-out mechanism, thanks to DM annihilations into radions and gravitons. Focusing on a scalar singlet DM candidate, we compute and apply current and future constraints from direct, indirect and collider-based searches. Our findings demonstrate the viability of this scenario and highlight its potential testability in upcoming experiments. We also discuss the possibility of inferring the number of branes if the radion and several Kaluza-Klein graviton resonances are detected at a future collider.
|
|
|
|
Flores, M. M., Kim, J. S., Rolbiecki, K., & Ruiz de Austri, R. (2023). Updated LHC bounds on MUED after run 2. Int. J. Mod. Phys. A, 38(1), 2350002–14pp.
Abstract: We present updated LHC limits on the minimal universal extra dimensions (MUEDs) model from the Run 2 searches. We scan the parameter space against a number of searches implemented in the public code CheckMATE and derive up-to-date limits on the MUED parameter space from 13TeV searches. The strongest constraints come from a search dedicated to squarks and gluinos with one isolated lepton, jets and missing transverse energy. In the procedure, we take into account initial state radiation and stress its importance in the MUED searches, which is not always appreciated.
|
|
|
|
Lee, H. M., Park, M., & Sanz, V. (2025). Gravity-Mediated Dark Matter at a low reheating temperature. J. High Energy Phys., 05(5), 126–26pp.
Abstract: We present a new study on the Gravity-Mediated Dark Matter (GMDM) scenario, where interactions between dark matter (DM) and the Standard Model are mediated by spin-two particles. Expanding on this established framework, we explore a novel regime characterized by a low reheating temperature that offers an alternative to the conventional thermal relic paradigm. This approach opens new possibilities for understanding the dynamics of the dark sector, encompassing both the dark matter particles (fermion, scalar and vector) and the spin-two mediators. Our analysis examines the constraints imposed by the relic abundance of DM, collider experiments, and direct detection searches, spanning a wide mass range for the dark sector, from very light to extremely heavy states. This work opens new possibilities for the phenomenology of GMDM.
|
|