|
Abraham, R. M. et al, & Garcia Soto, A. (2022). Tau neutrinos in the next decade: from GeV to EeV. J. Phys. G, 49(11), 110501–148pp.
Abstract: Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
|
|
|
Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. J. Cosmol. Astropart. Phys., 08(8), 006–27pp.
Abstract: Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.
|
|
|
Adhikari, R. et al, Pastor, S., & Valle, J. W. F. (2017). A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys., 01(1), 025–247pp.
Abstract: We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
|
|
|
Adolf, P., Hirsch, M., Krieg, S., Pas, H., & Tabet, M. (2024). Fitting the DESI BAO data with dark energy driven by the Cohen-Kaplan-Nelson bound. J. Cosmol. Astropart. Phys., 08(8), 048–18pp.
Abstract: Gravity constrains the range of validity of quantum field theory. As has been pointed out by Cohen, Kaplan, and Nelson (CKN), such effects lead to interdependent ultraviolet (UV) and infrared (IR) cutoffs that may stabilize the dark energy of the universe against quantum corrections, if the IR cutoff is set by the Hubble horizon. As a consequence of the cosmic expansion, this argument implies a time-dependent dark energy density. In this paper we confront this idea with recent data from DESI BAO, Hubble and supernova measurements. We find that the CKN model provides a better fit to the data than the Lambda CDM model and can compete with other models of time-dependent dark energy that have been studied so far.
|
|
|
Agarwalla, S. K., Blennow, M., Fernandez-Martinez, E., & Mena, O. (2011). Neutrino probes of the nature of light dark matter. J. Cosmol. Astropart. Phys., 09(9), 004–19pp.
Abstract: Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.
|
|
|
Aja, B. et al, & Gimeno, B. (2022). The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors. J. Cosmol. Astropart. Phys., 11(11), 044–29pp.
Abstract: We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
|
|
|
Alimena, J. et al, Hirsch, M., Mamuzic, J., Mitsou, V. A., & Santra, A. (2020). Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider. J. Phys. G, 47(9), 090501–226pp.
Abstract: Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
|
|
|
Alvarez Melcon, A. et al, & Gimeno, B. (2021). First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energy Phys., 10(10), 075–16pp.
Abstract: We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 μeV < m(a)< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
|
|
|
Alvarez-Ruso, L., Hayato, Y., & Nieves, J. (2014). Progress and open questions in the physics of neutrino cross sections at intermediate energies. New J. Phys., 16, 075015–62pp.
Abstract: New and more precise measurements of neutrino cross sections have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This effort is crucial to achieving the precision goals of the neutrino oscillation program, making new discoveries, like the CP violation in the leptonic sector, possible. We review the recent progress in the physics of neutrino cross sections, putting emphasis on the open questions that arise in the comparison with new experimental data. Following an overview of recent neutrino experiments and future plans, we present some details about the theoretical development in the description of (anti) neutrino-induced quasielastic (QE) scattering and the role of multi-nucleon QE-like mechanisms. We cover not only pion production in nucleons and nuclei but also other inelastic channels including strangeness production and photon emission. Coherent reaction channels on nuclear targets are also discussed. Finally, we briefly describe some of the Monte Carlo event generators, which are at the core of all neutrino oscillation and cross-section measurements.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Bou-Cabo, M., Hernandez-Rey, J. J., Sanchez-Losa, A., Tönnis, C., et al. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys., 05(5), 016–13pp.
Abstract: A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.
|
|