|
Davesne, D., Becker, P., Pastore, A., & Navarro, J. (2016). Infinite matter properties and zero-range limit of non-relativistic finite-range interactions. Ann. Phys., 375, 288–312.
Abstract: We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.
|
|
Davesne, D., Meyer, J., Pastore, A., & Navarro, J. (2015). Partial wave decomposition of the N3LO equation of state. Phys. Scr., 90(11), 114002–6pp.
Abstract: By means of a partial wave decomposition, we separate their contributions to the equation of state (EoS) of symmetric nuclear matter for the N3LO pseudo-potential. In particular, we show that although both the tensor and the spin-orbit terms do not contribute to the EoS, they give a non-vanishing contribution to the separate (JLS) channels.
|
|
Davesne, D., Pastore, A., & Navarro, J. (2016). Extended Skyrme equation of state in asymmetric nuclear matter. Astron. Astrophys., 585, A83–11pp.
Abstract: We present a new equation of state for infinite systems (symmetric, asymmetric, and neutron matter) based on an extended Skyrme functional that has been constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces the main features of microscopic calculations very accurately and is compatible with recent measurements of two times Solar-mass neutron stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical interest.
|