|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2017). Gravity and handedness of photons. Int. J. Mod. Phys. D, 26(12), 1742001–5pp.
Abstract: Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
|
|
|
Araujo Filho, A. A. (2023). Thermodynamics of massless particles in curved spacetime. Int. J. Geom. Methods Mod. Phys., 12(13), 2350226–40pp.
Abstract: This work is devoted to study the behavior of massless particles within the context of curved spacetime. In essence, we investigate the consequences of the scale factor C(?) of the Friedmann-Robertson-Walker metric in the Einstein-aether formalism to study photon-like particles. To do so, we consider the system within the canonical ensemble formalism in order to derive the following thermodynamic state quantities: spectral radiance, Helmholtz free energy, pressure, entropy, mean energy and the heat capacity. Moreover, the correction to the Stefan-Boltzmann law and the equation of states are also provided. Particularly, we separate our study within three distinct cases, i.e. s = 0, p = 0; s = 1, p = 1; s = 2, p = 1. In the first one, the results are derived numerically. Nevertheless, for the rest of the cases, all the calculations are accomplished analytically showing explicitly the dependence of the scale factor C(?) and the Riemann zeta function ?(s). Furthermore, our analyses are accomplished in general taking into account three different regimes of temperature of the universe, i.e. the inflationary era (T = 10(13)GeV), the electroweak epoch (T = 10(3)GeV) and the cosmic microwave background (T = 10(-13)GeV).
|
|
|
Araujo Filho, A. A., Hassanabadi, H., Reis, J. A. A. S., & Lisboa-Santos, L. (2024). Fermions with electric dipole moment in curved space-time. Int. J. Mod. Phys. A, 39(19n20), 2450078–16pp.
Abstract: This paper explores the relativistic behavior of spin-half particles possessing an Electric Dipole Moment (EDM) in a curved space-time background induced by a spiral dislocation. A thorough review of the mathematical formulation of the Dirac spinor in the framework of quantum field theory sets the foundation for our investigation. By deriving the action that governs the interaction between the spinor field, the background space-time, and an external electric field, we establish a framework to study the dynamics of the system. Solving the resulting wave equation reveals a set of coupled equations for the radial components of the Dirac spinor, which give rise to a modified energy spectrum attributed to the EDM. To validate our findings, we apply them to the geometric phase and thermodynamics.
|
|
|
Delhom, A., Mariz, T., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2022). Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity. J. Cosmol. Astropart. Phys., 07(7), 018–27pp.
Abstract: The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.
|
|
|
Fernandez-Silvestre, D., Foo, J., & Good, M. R. R. (2022). On the duality of Schwarzschild-de Sitter spacetime and moving mirror. Class. Quantum Gravity, 39(5), 055006–18pp.
Abstract: The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
|
|