|
Achterberg, A., van Beekveld, M., Caron, S., Gomez-Vargas, G. A., Hendriks, L., & Ruiz de Austri, R. (2017). Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter. J. Cosmol. Astropart. Phys., 12(12), 040–23pp.
Abstract: The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.
|
|
|
Barenboim, G., & Panotopoulos, G. (2010). Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner. J. High Energy Phys., 09, 011–20pp.
Abstract: The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
|
|
|
Barenboim, G., & Panotopoulos, G. (2011). Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario. J. High Energy Phys., 08(8), 027–16pp.
Abstract: In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
|
|
|
Barenboim, G., & Park, W. I. (2016). New- vs. chaotic- inflations. J. Cosmol. Astropart. Phys., 02(2), 061–20pp.
Abstract: We show that “spiralized” models of new-inflation can be experimentally identified mostly by their positive spectral running in direct contrast with most chaotic-inflation models which have negative runnings typically in the range of O(10(-4)-10(-3)).
|
|
|
Barenboim, G., & Park, W. I. (2017). A full picture of large lepton number asymmetries of the Universe. J. Cosmol. Astropart. Phys., 04(4), 048–10pp.
Abstract: A large lepton number asymmetry of O(0.1-1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10(-2) -10(2)) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m(phi) greater than or similar to O(10) TeV and phi(0) greater than or similar to O(10(14)) GeV, respectively.
|
|
|
Barenboim, G., & Rasero, J. (2011). Baryogenesis from a right-handed neutrino condensate. J. High Energy Phys., 03(3), 097–15pp.
Abstract: We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
|
|
|
Barenboim, G., & Rasero, J. (2012). Electroweak baryogenesis window in non standard cosmologies. J. High Energy Phys., 07(7), 028–20pp.
Abstract: In this work we show that the new bounds on the Higgs mass are more than difficult to reconcile with the strong constraints on the physical parameters of the Standard Model and the Minimal Supersymmetric Standard Model imposed by the preservation of the baryon asymmetry. This bound can be weakened by assuming a nonstandard cosmology at the time of the electroweak phase transition, reverting back to standard cosmology by BBN time. Two explicit examples are an early period of matter dominated expansion due to a heavy right handed neutrino (see-saw scale), or a nonstandard braneworld expansion.
|
|
|
Barenboim, G., & Rasero, J. (2014). Structure formation during an early period of matter domination. J. High Energy Phys., 04(4), 138–17pp.
Abstract: In this work we show that modifying the thermal history of the Universe by including an early period of matter domination can lead to the formation of astronomical objects. However, the survival of these objects can only be possible if the dominating matter decays to a daughter particle which is not only almost degenerate with the parent particle but also has an open annihilation channel. This requirement translates in an upper bound for the coupling of such a channel and makes the early structure formation viable.
|
|
|
Barenboim, G., Blinov, N., & Stebbins, A. (2021). Smallest remnants of early matter domination. J. Cosmol. Astropart. Phys., 12(12), 026–50pp.
Abstract: The evolution of the universe prior to Big Bang Nucleosynthesis could have gone through a phase of early matter domination which enhanced the growth of small-scale dark matter structure. If this period was long enough, self-gravitating objects formed prior to reheating. We study the evolution of these dense early halos through reheating. At the end of early matter domination, the early halos undergo rapid expansion and eventually eject their matter. We find that this process washes out structure on scales much larger than naively expected from the size of the original halos. We compute the density profiles of the early halo remnants and use them to construct late-time power spectra that include these non-linear effects. We evolve the resulting power spectrum to estimate the properties of microhalos that would form after matter-radiation equality. Surprisingly, cosmologies with a short period of early matter domination lead to an earlier onset of microhalo formation compared to those with a long period. In either case, dark matter structure formation begins much earlier than in the standard cosmology, with most dark matter bound in microhalos in the late universe.
|
|
|
Beneke, M., Hellmann, C., & Ruiz-Femenia, P. (2013). Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation. J. High Energy Phys., 03(3), 148–48pp.
Abstract: We compute analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM, including the previously unknown off-diagonal rates. The results are prerequisites to the calculation of the Sommerfeld enhancement in the MSSM, which will be presented in subsequent work. They can also be used to obtain concise analytic expressions for MSSM dark matter pair annihilation in the present Universe for a large number of exclusive two-particle final states.
|
|