|
|
Achterberg, A., van Beekveld, M., Caron, S., Gomez-Vargas, G. A., Hendriks, L., & Ruiz de Austri, R. (2017). Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter. J. Cosmol. Astropart. Phys., 12(12), 040–23pp.
Abstract: The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.
|
|
|
|
Antusch, S., Marschall, K., & Torrenti, F. (2025). Equation of state during (p)reheating with trilinear. J. Cosmol. Astropart. Phys., 11(11), 002–35pp.
Abstract: We characterize the post-inflationary evolution of the equation of state of the universe from the end of inflation until the onset of radiation domination, when the inflaton is coupled to a daughter field through a trilinear interaction. We consider an inflaton potential that is quadratic near the minimum and flattens in the inflationary regime. By simulating the dynamics in 2+1-dimensional lattices, we have tracked the long-term evolution of the equation of state for about ten e-folds of expansion, for various coupling strengths. The trilinear interaction initially excites daughter field modes through a process of tachyonic resonance immediately after inflation and triggers a temporary deviation of the equation of state from (sic) = 0 to a maximum value (sic) = (sic)(max) < 1/3. However, at much later times, the inflaton homogeneous mode once again dominates the energy density, pushing the equation of state towards (sic) = 0 until the onset of perturbative reheating. By combining the lattice results with a Boltzmann approach, we characterize the entire post-inflationary expansion history, which allows to calculate precise predictions for the inflationary CMB observables. We also accurately compute the redshift of the stochastic gravitational wave background produced during preheating, and show that taking the temporary return of the equation of state towards (sic) = 0 into account can reduce the amplitude by many orders of magnitude relative to previous estimates.
|
|
|
|
Barenboim, G., & Panotopoulos, G. (2010). Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner. J. High Energy Phys., 09, 011–20pp.
Abstract: The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
|
|
|
|
Barenboim, G., & Panotopoulos, G. (2011). Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario. J. High Energy Phys., 08(8), 027–16pp.
Abstract: In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
|
|
|
|
Barenboim, G., & Park, W. I. (2016). New- vs. chaotic- inflations. J. Cosmol. Astropart. Phys., 02(2), 061–20pp.
Abstract: We show that “spiralized” models of new-inflation can be experimentally identified mostly by their positive spectral running in direct contrast with most chaotic-inflation models which have negative runnings typically in the range of O(10(-4)-10(-3)).
|
|