|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Pedraza, L. K., et al. (2024). A rapid method for prediction of the non-resonant ultra-fast multipactor regime in high gradient RF accelerating structures. Results Phys., 64, 107921–9pp.
Abstract: The purpose of this work is to present an analytical method that allows to estimate in an approximate and fast way the presence of the non-resonant and ultra-fast multipactor effect in RF accelerating structures in the presence of high gradient electromagnetic fields. This single-surface multipactor regime, which has been little studied in the scientific literature, is characterised by appearing only under conditions of very strong RF electric fields (of the order of tens or hundreds of MV/m), where it is predominant over other types of single- or dual-surface resonance described in classical multipactor theory. This type of multipactor causes a rapid growth of the electron population and poses a serious drawback in the operation of RF accelerator components operating under high gradient conditions. Specifically, in dielectric-assist accelerating structures (DAA) it has been experimentally found that the presence of multipactor limits the maximum operating gradient of these components due to a significant increase in the reflected power due to the discharge, being this phenomenon the main problem to overcome. In a previous work, we found and described in detail by means of numerical simulations the presence of this non-resonant and ultra-fast multipactor regime in a DAA structure design for hadrontherapy. Here we aim to present a simple and fast method to predict the presence of this non-resonant and ultra-fast multipactor regime in RF accelerator structures with cylindrical revolution symmetry around the acceleration axis. This method is especially useful in the design stages of accelerating structures as it provides much faster results than numerical simulations of the multipactor, with quite good accuracy in a wide range of cases as shown in this paper.
|
|
Martin-Luna, P., Bonatto, A., Bontoiu, C., Xia, G., & Resta-Lopez, J. (2024). Plasmonic excitations in double-walled carbon nanotubes. Results Phys., 60, 107698–11pp.
Abstract: The interactions of charged particles moving paraxially in multi-walled carbon nanotubes (MWCNTs) may excite electromagnetic modes. This wake effect has recently been proposed as a potential novel method of short-wavelength high-gradient particle acceleration. In this work, the excitation of wakefields in double-walled carbon nanotubes (DWCNTs) is studied by means of the linearized hydrodynamic theory. General expressions have been derived for the excited longitudinal and transverse wakefields and related to the resonant wavenumbers which can be obtained from the dispersion relation. In the absence of friction, the stopping power of the wakefield driver, modelled here as a charged macroparticle, can be written solely as a function of these resonant wavenumbers. The dependencies of the wakefields on the radii of the DWCNT and the driving velocity have been studied. DWCNTs with inter-wall distances much smaller than the internal radius may be a potential option to obtain higher wakefields for particle acceleration compared to single-walled carbon nanotubes (SWCNTs).
|
|
Barenboim, G., Del Debbio, L., Hirn, J., & Sanz, V. (2024). Exploring how a generative AI interprets music. Neural Comput. Appl., 36, 17007–17022.
Abstract: We aim to investigate how closely neural networks (NNs) mimic human thinking. As a step in this direction, we study the behavior of artificial neuron(s) that fire most when the input data score high on some specific emergent concepts. In this paper, we focus on music, where the emergent concepts are those of rhythm, pitch and melody as commonly used by humans. As a black box to pry open, we focus on Google’s MusicVAE, a pre-trained NN that handles music tracks by encoding them in terms of 512 latent variables. We show that several hundreds of these latent variables are “irrelevant” in the sense that can be set to zero with minimal impact on the reconstruction accuracy. The remaining few dozens of latent variables can be sorted by order of relevance by comparing their variance. We show that the first few most relevant variables, and only those, correlate highly with dozens of human-defined measures that describe rhythm and pitch in music pieces, thereby efficiently encapsulating many of these human-understandable concepts in a few nonlinear variables.
|
|
Montani, G., De Angelis, M., Bombacigno, F., & Carlevaro, N. (2024). Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension. Mon. Not. Roy. Astron. Soc., 527, L156–L161.
Abstract: We introduce a theoretical framework to interpret the Hubble tension, based on the combination of a metric f(R) gravity with a dynamical dark energy contribution. The modified gravity provides the non-minimally coupled scalar field responsible for the proper scaling of the Hubble constant, in order to accommodate for the local SNIa pantheon+ data and Planck measurements. The dynamical dark energy source, which exhibits a phantom divide line separating the low redshift quintessence regime (−1 < w < −1/3) from the phantom contribution (w < −1) in the early Universe, guarantees the absence of tachyonic instabilities at low redshift. The resulting H0(z) profile rapidly approaches the Planck value, with a plateau behaviour for z ≳ 5. In this scenario, the Hubble tension emerges as a low redshift effect, which can be in principle tested by comparing SNIa predictions with far sources, like QUASARS and gamma ray bursts.
|
|
King, S. F., Leontaris, G. K., Marsili, L., & Zhou, Y. L. (2024). Leptogenesis in realistic flipped SU(5). J. High Energy Phys., 12, 211–17pp.
Abstract: We study thermal leptogenesis in realistic supersymmetric flipped SU(5)×U(1) unification. As up-type quarks and neutrinos are arranged in the same multiplets, they exhibit strong correlations, and it is commonly believed that the masses of right-handed (RH) neutrinos are too hierarchical to fit the low-energy neutrino data. This pattern generally predicts a lightest RH neutrino too light to yield successful leptogenesis, with any lepton-antilepton asymmetry generated from heavier neutrinos being washed out unless special flavour structures are assumed. We propose a different scenario in which the lightest two RH neutrinos N1 and N2 have nearby masses of order 109 GeV, with thermal leptogenesis arising non-resonantly from both N1 and N2. We show that this pattern is consistent with all data on fermion masses and mixing and predicts the lightest physical left-handed neutrino mass to be smaller than about 10−7 eV. The Dirac phase, which does not take the maximal CP-violating value, plays an important role in leptogenesis.
|
|
|