|
Addazi, A. et al, Martinez-Mirave, P., Mitsou, V. A., Palomares-Ruiz, S., Tortola, M., & Zornoza, J. D. (2022). Quantum gravity phenomenology at the dawn of the multi-messenger era-A review. Prog. Part. Nucl. Phys., 125, 103948–119pp.
Abstract: The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
|
|
|
Alidra, M. et al, & Torro Pastor, E. (2021). The MATHUSLA test stand. Nucl. Instrum. Methods Phys. Res. A, 985, 164661–9pp.
Abstract: The rate of muons from LHC pp collisions reaching the surface above the ATLAS interaction point is measured as a function of the ATLAS luminosity and compared with expected rates from decays of W and Z bosons and b- and c-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 x 2.5 x 6.5 m(3) active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three (x, y)-measuring layers separated by 1.74 m from each other. Triggers selecting both upward-going tracks and downward-going tracks were used.
|
|
|
AMON and ANTARES Collaborations(Ayala Solares, H. A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Gozzini, R., Hernandez-Rey, J. J., et al. (2019). A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophys. J., 886(2), 98–8pp.
Abstract: We analyze 7.3 yr of ANTARES high-energy neutrino and Fermi Large Area Telescope (LAT) gamma-ray data in search of cosmic neutrino + gamma-ray (nu + gamma) transient sources or source populations. Our analysis has the potential to detect either individual nu + gamma transient sources (durations delta t less than or similar to 1000 s), if they exhibit sufficient gamma-ray or neutrino multiplicity, or a statistical excess of nu + gamma transients of individually lower multiplicities. Individual high gamma-ray multiplicity events could be produced, for example, by a single ANTARES neutrino in coincidence with a LAT-detected gamma-ray burst. Treating ANTARES track and cascade event types separately, we establish detection thresholds by Monte Carlo scrambling of the neutrino data, and determine our analysis sensitivity by signal injection against these scrambled data sets. We find our analysis is sensitive to nu + gamma transient populations responsible for >5% of the observed gamma-coincident neutrinos in the track data at 90% confidence. Applying our analysis to the unscrambled data reveals no individual nu + gamma events of high significance; two ANTARES track + Fermi gamma-ray events are identified that exceed a once per decade false alarm rate threshold (p = 17%). No evidence for subthreshold nu + gamma source populations is found among the track (p = 39%) or cascade (p = 60%) events. Exploring a possible correlation of high-energy neutrino directions with Fermi gamma-ray sky brightness identified in previous work yields no added support for this correlation. While TXS.0506+056, a blazar and variable (nontransient) Fermi gamma-ray source, has recently been identified as the first source of high-energy neutrinos, the challenges in reconciling observations of the Fermi gamma-ray sky, the IceCube high-energy cosmic neutrinos, and ultrahigh-energy cosmic rays using only blazars suggest a significant contribution by other source populations. Searches for transient sources of high-energy neutrinos thus remain interesting, with the potential for either neutrino clustering or multimessenger coincidence searches to lead to discovery of the first nu + gamma transients.
|
|
|
ANTARES and IceCube Collaborations(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Hernandez-Rey, J. J., Illuminati, G., et al. (2018). Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophys. J. Lett., 868(2), L20–7pp.
Abstract: The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2011). First Search For Point Sources Of High-Energy Cosmic Neutrinos With The Antares Neutrino Telescope. Astrophys. J. Lett., 743(1), L14–6pp.
Abstract: Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 deg. The neutrino flux sensitivity is 7.5 x 10(-8)(E(v)/GeV)(-2) GeV(-1) s(-1) cm(-2) for the part of the sky that is always visible (delta < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2012). Search for Cosmic Neutrino Point Sources with Four Years of Data from the Antares Telescope. Astrophys. J., 760(1), 53–10pp.
Abstract: In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E-nu(-2). spectrum, these flux limits are at 1-10x10(-8) GeV cm(-2) s(-1) for declinations ranging from -90 degrees to 40 degrees. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Bigongiari, C., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., Lambard, G., et al. (2013). Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions. Astrophys. J., 774(1), 19–7pp.
Abstract: A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.
|
|
|
Bertolez-Martinez, T., Arguelles, C., Esteban, I., Lopez-Pavon, J., Martinez-Soler, I., & Salvado, J. (2023). IceCube and the origin of ANITA-IV events. J. High Energy Phys., 07(7), 005–24pp.
Abstract: Recently, the ANITA collaboration announced the detection of new, unsettling upgoing Ultra-High-Energy (UHE) events. Understanding their origin is pressing to ensure success of the incoming UHE neutrino program. In this work, we study their internal consistency and the implications of the lack of similar events in IceCube. We introduce a generic, simple parametrization to study the compatibility between these two observatories in Standard Model-like and Beyond Standard Model scenarios: an incoming flux of particles that interact with Earth nucleons with cross section sigma, producing particle showers along with long-lived particles that decay with lifetime iota and generate a shower that explains ANITA observations. We find that the ANITA angular distribution imposes significant constraints, and when including null observations from IceCube only iota similar to 10(-3)-10(-2) s and sigma similar to 10(-33) -10(-32) cm(2) can explain the data. This hypothesis is testable with future IceCube data. Finally, we discuss a specific model that can realize this scenario. Our analysis highlights the importance of simultaneous observations by high-energy optical neutrino telescopes and new UHE radio detectors to uncover cosmogenic neutrinos or discover new physics.
|
|
|
De La Torre Luque, P., Gaggero, D., Grasso, D., Fornieri, O., Egberts, K., Steppa, C., et al. (2023). Galactic diffuse gamma rays meet the PeV frontier. Astron. Astrophys., 672, A58–11pp.
Abstract: The Tibet AS gamma and LHAASO collaborations recently reported the observation of a gamma-ray diffuse emission with energy up to the PeV level from the Galactic plane.Aims. We discuss the relevance of non-uniform cosmic-ray transport scenarios and the implications of these results for cosmic-ray physics.Methods. We used the DRAGON and HERMES codes to build high-resolution maps and spectral distributions of that emission for several representative models under the condition that they reproduce a wide set of local cosmic-ray data up to 100 PeV.Results. We show that the energy spectra measured by Tibet AS gamma, LHAASO, ARGO-YBJ, and Fermi-LAT in several regions of interest in the sky can all be reasonably described in terms of the emission arising by the Galactic cosmic-ray “sea”. We also show that all our models are compatible with IceTop gamma-ray upper limits.Conclusions. We compare the predictions of conventional and space-dependent transport models with those data sets. Although the Fermi-LAT, ARGO-YBJ, and LHAASO preliminary data slightly favor this scenario, due to the still large experimental errors, the poorly known source spectral shape at the highest energies, the potential role of spatial fluctuations in the leptonic component, and a possible larger-than-expected contamination due to unresolved sources, a solid confirmation requires further investigations. We discuss which measurements will be most relevant in order to resolve the remaining degeneracy.
|
|
|
De La Torre Luque, P., Gaggero, D., Grasso, D., & Marinelli, A. (2022). Prospects for detection of a galactic diffuse neutrino flux. Front. Astron. Space Sci., 9, 1041838–9pp.
Abstract: A Galactic cosmic-ray transport model featuring non-homogeneous transport has been developed over the latest years. This setup is aimed at reproducing gamma-ray observations in different regions of the Galaxy (with particular focus on the progressive hardening of the hadronic spectrum in the inner Galaxy) and was shown to be compatible with the very-high-energy gamma-ray diffuse emission recently detected up to PeV energies. In this work, we extend the results previously presented to test the reliability of that model throughout the whole sky. To this aim, we compare our predictions with detailed longitude and latitude profiles of the diffuse gamma-ray emission measured by Fermi-LAT for different energies and compute the expected Galactic nu diffuse emission, comparing it with current limits from the ANTARES collaboration. We emphasize that the possible detection of a Galactic nu component will allow us to break the degeneracy between our model and other scenarios featuring prominent contributions from unresolved sources and TeV halos.
|
|