|
Davier, M., Diaz-Calderon, D., Malaescu, B., Pich, A., Rodriguez-Sanchez, A., & Zhang, Z. (2023). The Euclidean Adler function and its interplay with Delta alpha(had)(QED) and alpha(s). J. High Energy Phys., 04(4), 067–57pp.
Abstract: Three different approaches to precisely describe the Adler function in the Euclidean regime at around 2 GeVs are available: dispersion relations based on the hadronic production data in e(+)e(-) annihilation, lattice simulations and perturbative QCD (pQCD). We make a comprehensive study of the perturbative approach, supplemented with the leading power corrections in the operator product expansion. All known contributions are included, with a careful assessment of uncertainties. The pQCD predictions are compared with the Adler functions extracted from ?a( QED)(had)(Q(2)), using both the DHMZ compilation of e(+)e(-) data and published lattice results. Taking as input the FLAG value of a(s), the pQCD Adler function turns out to be in good agreement with the lattice data, while the dispersive results lie systematically below them. Finally, we explore the sensitivity to a(s) of the direct comparison between the data-driven, lattice and QCD Euclidean Adler functions. The precision with which the renormalisation group equation can be tested is also evaluated.
|
|
|
Li, H. P., Yi, J. Y., Xiao, C. W., Yao, D. L., Liang, W. H., & Oset, E. (2024). Correlation function and the inverse problem in the BD interaction. Chin. Phys. C, 48(5), 053107–7pp.
Abstract: We study the correlation functions of the (BD+)-D-0, (B+D0) system, which develops a bound state of approximately 40MeV, using inputs consistent with the T-cc(3875) state. Then, we address the inverse problem starting from these correlation functions to determine the scattering observables related to the system, including the existence of the bound state and its molecular nature. The important output of the approach is the uncertainty with which these observables can be obtained, considering errors in the (BD+)-D-0, (B+D0) correlation functions typical of current values in correlation functions. We find that it is possible to obtain scattering lengths and effective ranges with relatively high precision and the existence of a bound state. Although the pole position is obtained with errors of the order of 50% of the binding energy, the molecular probability of the state is obtained with a very small error of the order of 6%. All these findings serve as motivation to perform such measurements in future runs of high energy hadron collisions.
|
|