|
Binosi, D., Chang, L., Papavassiliou, J., & Roberts, C. D. (2015). Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B, 742, 183–188.
Abstract: Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.
|
|
|
Binosi, D., Ibañez, D., & Papavassiliou, J. (2014). Nonperturbative study of the four gluon vertex. J. High Energy Phys., 09(9), 059–32pp.
Abstract: In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
|
|
|
Cui, Z. F., Zhang, J. L., Binosi, D., De Soto, F., Mezrag, C., Papavassiliou, J., et al. (2020). Effective charge from lattice QCD. Chin. Phys. C, 44(8), 083102–10pp.
Abstract: Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD 's renormalisation-group-invariant process-independent effective charge, (alpha) over cap (k(2)). Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, m(0) = 0.43(1) GeV, this coupling saturates at infrared momenta: (alpha) over cap/pi = 0.97(4). Amongst other things: (alpha) over cap (k(2)) is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by (alpha) over cap (k(2)) suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.
|
|
|
Horvat, S., Magas, V. K., Strottman, D. D., & Csernai, L. P. (2010). Entropy development in ideal relativistic fluid dynamics with the Bag Model equation of state. Phys. Lett. B, 692(4), 277–280.
Abstract: We consider an idealized situation where the Quark-Gluon Plasma (QGP) is described by a perfect, (3 + 1)-dimensional fluid dynamic model starting from an initial state and expanding until a final state where freeze-out and/or hadronization takes place. We study the entropy production with attention to effects of (i) numerical viscosity, (ii) late stages of flow where the Bag Constant and the partonic pressure are becoming similar, (iii) and the consequences of final freeze-out and constituent quark matter formation.
|
|