|
Arbelaez, C., Cottin, G., Helo, J. C., Hirsch, M., & de Melo, T. B. (2025). Long-lived particle phenomenology in one-loop neutrino mass models with dark matter. J. High Energy Phys., 02(2), 049–22pp.
Abstract: Neutrino masses and dark matter (DM) might have a common origin. The scotogenic model can be considered the proto-type model realizing this idea, but many other variants exist. In this paper we explore the phenomemology of a particular DM neutrino mass model, containing a triplet scalar. We calculate the relic density and check for constraints from direct detection experiments. The parameter space of the model, allowed by these constraints, contains typically a long-lived or quasi-stable doubly charged scalar, that can be searched for at the LHC. We reinterpret existing searches to derive limits on the masses of the scalars of the model and estimate future sensitivities in the high-luminosity phase of the LHC. The searches we discuss can serve to constrain also many other 1-loop neutrino mass models.
|
|
Boronat, M., Fuster, J., Garcia, I., Ros, E., & Vos, M. (2015). A robust jet reconstruction algorithm for high-energy lepton colliders. Phys. Lett. B, 750, 95–99.
Abstract: We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t (t) over tilde and ZZ production at future linear e(+)e(-) colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e(+)e(-) colliders.
|
|
Campanario, F., Kerner, M., Ninh, D. L., & Zeppenfeld, D. (2014). Next-to-leading order QCD corrections to ZZ production in association with two jets. J. High Energy Phys., 07(7), 148–14pp.
Abstract: We present a calculation of next-to-leading order QCD corrections to QCD-induced ZZ production in association with two jets at hadron colliders. Both Z bosons decay leptonically with all off-shell effects, virtual photon contributions and spin-correlation effects fully taken into account. This process is an important background to weak boson scattering and to searches for signals of new physics beyond the Standard Model. As expected, the next-to-leading order corrections reduce significantly the scale uncertainty and show a non-trivial phase space dependence in kinematic distributions. Our code will be publicly available as part of the parton level Monte Carlo program VBFNLO.
|
|
Carrasco, J., & Zurita, J. (2024). Emerging jet probes of strongly interacting dark sectors. J. High Energy Phys., 01(1), 034–23pp.
Abstract: A strongly interacting dark sector can give rise to a class of signatures dubbed dark showers, where in analogy to the strong sector in the Standard Model, the dark sector undergoes its own showering and hadronization, before decaying into Standard Model final states. When the typical decay lengths of the dark sector mesons are larger than a few centimeters (and no larger than a few meters) they give rise to the striking signature of emerging jets, characterized by a large multiplicity of displaced vertices.In this article we consider the general reinterpretation of the CMS search for emerging jets plus prompt jets into arbitrary new physics scenarios giving rise to emerging jets. More concretely, we consider the cases where the SM Higgs mediates between the dark sector and the SM, for several benchmark decay scenarios. Our procedure is validated employing the same model than the CMS emerging jet search. We find that emerging jets can be the leading probe in regions of parameter space, in particular when considering the so-called gluon portal and dark photon portal decay benchmarks. With the current 16.1 fb-1 of luminosity this search can exclude down to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(20)% exotic branching ratio of the SM Higgs, but a naive extrapolation to the 139 fb-1 luminosity employed in the current model-independent, indirect bound of 16 % would probe exotic branching ratios into dark quarks down to below 10 %. Further extrapolating these results to the HL-LHC, we find that one can pin down exotic branching ratio values of 1%, which is below the HL-LHC expectations of 2.5-4 %. We make our recasting code publicly available, as part of the LLP Recasting Repository.
|
|
Catani, S., de Florian, D., & Rodrigo, G. (2012). Space-like (vs. time-like) collinear limits in QCD: is factorization violated? J. High Energy Phys., 07(7), 026–88pp.
Abstract: We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e. g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum and colour charge of the non-collinear partons. We present explicit results on one-loop and two-loop amplitudes for both the two-parton and multiparton collinear limits. At the level of squared amplitudes and, more generally, cross sections in hadron-hadron collisions, the violation of strict collinear factorization has implications on the non-abelian structure of logarithmically-enhanced terms in perturbative calculations (starting from the next-to-next-to-leading order) and on various factorization issues of mass singularities (starting from the next-to-next-to-next-to-leading order).
|
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
Abstract: We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
|
|
d'Enterria, D. (2024). The strong coupling constant: state of the art and the decade ahead. J. Phys. G, 51(9), 090501–163pp.
Abstract: Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant alpha S . The current O(1%) uncertainty of the QCD coupling evaluated at the reference Z boson mass, alpha S(mZ2)=0.1179 +/- 0.0009 , is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current alpha S(mZ2) world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic tau decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e+e-, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven alpha S(mZ2) extraction methods, discuss novel alpha S determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a 'wish list' of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on alpha S(mZ2) within the next decade.
|
|
Faus-Golfe, A., Navarro, J., Fuster Martinez, N., Resta Lopez, J., & Giner Navarro, J. (2016). Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC. Nucl. Instrum. Methods Phys. Res. A, 819, 122–138.
Abstract: The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.
|
|
Kalliokoski, M., Mitsou, V. A., de Montigny, M., Mukhopadhyay, A., Ouimet, P. P. A., Pinfold, J., et al. (2024). Searching for minicharged particles at the energy frontier with the MoEDAL-MAPP experiment at the LHC. J. High Energy Phys., 04(4), 137–22pp.
Abstract: The MoEDAL's Apparatus for Penetrating Particles (MAPP) Experiment is designed to expand the search for new physics at the LHC, significantly extending the physics program of the baseline MoEDAL Experiment. The Phase-1 MAPP detector (MAPP-1) is currently undergoing installation at the LHC's UA83 gallery adjacent to the LHCb/MoEDAL region at Interaction Point 8 and will begin data-taking in early 2024. The focus of the MAPP experiment is on the quest for new feebly interacting particles – avatars of new physics with extremely small Standard Model couplings, such as minicharged particles (mCPs). In this study, we present the results of a comprehensive analysis of MAPP-1's sensitivity to mCPs arising in the canonical model involving the kinetic mixing of a massless dark U(1) gauge field with the Standard Model hypercharge gauge field. We focus on several dominant production mechanisms of mCPs at the LHC across the mass-mixing parameter space of interest to MAPP: Drell-Yan pair production, direct decays of heavy quarkonia and light vector mesons, and single Dalitz decays of pseudoscalar mesons. The 95% confidence level background-free sensitivity of MAPP-1 for mCPs produced at the LHC's Run 3 and the HL-LHC through these mechanisms, along with projected constraints on the minicharged strongly interacting dark matter window, are reported. Our results indicate that MAPP-1 exhibits sensitivity to sizable regions of unconstrained parameter space and can probe effective charges as low as 8 x 10 -4 e and 6 x 10 -4 e for Run 3 and the HL-LHC, respectively.
|
|
Kuhn, J. H., & Rodrigo, G. (2012). Charge asymmetries of top quarks at hadron colliders revisited. J. High Energy Phys., 01(1), 063–25pp.
Abstract: A sizeable difference in the differential production cross section of top-compared to antitop-quark production, denoted charge asymittetm has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for “new physics'. In the present paper the Standard Model predictions for Tevatron and LHe experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the it system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the tt-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region bot ti to the Standard Model contribution and effects from ”new physics".
|