|
Agaras, M. N. et al, & Fiorini, L. (2023). Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2. J. Instrum., 18(6), P06023–35pp.
Abstract: This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.
|
|
Ahlburg, P. et al, & Marinas, C. (2020). EUDAQ – a data acquisition software framework for common beam telescopes. J. Instrum., 15(1), P01038–30pp.
Abstract: EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications.
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2020). Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger. J. Instrum., 15(11), P11016–48pp.
Abstract: The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the new Multichip Modules along with the improvements to the signal processing achieved.
|
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2014). Monitoring and data quality assessment of the ATLAS liquid argon calorimeter. J. Instrum., 9, P07024–55pp.
Abstract: The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis.
|
|
ATLAS Collaboration(Abat, E. et al), Bernabeu Verdu, J., Castillo Gimenez, V., Costa, M. J., Escobar, C., Ferrer, A., et al. (2010). Combined performance studies for electrons at the 2004 ATLAS combined test-beam. J. Instrum., 5, P11006–68pp.
Abstract: In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.
|
|
ATLAS Collaboration(Abat, E. et al), Bernabeu Verdu, J., Castillo Gimenez, V., Costa, M. J., Escobar, C., Ferrer, A., et al. (2011). A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test. J. Instrum., 6, P06001–35pp.
Abstract: A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
|
|
ATLAS Collaboration(Abat, E. et al), Bernabeu Verdu, J., Castillo Gimenez, V., Costa, M. J., Escobar, C., Ferrer, A., et al. (2011). Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam. J. Instrum., 6, P04001–40pp.
Abstract: The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.
|
|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Calderon, D., Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., et al. (2013). Mechanical construction and installation of the ATLAS tile calorimeter. J. Instrum., 8, T11001–26pp.
Abstract: This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.
|
|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., Gonzalez, V., et al. (2013). The optical instrumentation of the ATLAS Tile Calorimeter. J. Instrum., 8, P01005–21pp.
Abstract: The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
|
|
ATLAS Tile Calorimeter System(Abdallah, J. et al), Ferrer, A., Fiorini, L., Hernandez Jimenez, Y., Higon-Rodriguez, E., Ruiz-Martinez, A., et al. (2016). The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1. J. Instrum., 11, T10005–29pp.
Abstract: This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.
|