|
Aristizabal Sierra, D., Tortola, M., Valle, J. W. F., & Vicente, A. (2014). Leptogenesis with a dynamical seesaw scale. J. Cosmol. Astropart. Phys., 07(7), 052–20pp.
Abstract: In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
|
|
|
Bernal, N., Colucci, S., Josse-Michaux, F. X., Racker, J., & Ubaldi, L. (2013). On baryogenesis from dark matter annihilation. J. Cosmol. Astropart. Phys., 10(10), 035–30pp.
Abstract: We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.
|
|
|
Racker, J. (2014). Mass bounds for baryogenesis from particle decays and the inert doublet model. J. Cosmol. Astropart. Phys., 03(3), 025–23pp.
Abstract: In models for thermal baryogenesis from particle decays, the mass of the decaying particle is typically many orders of magnitude above the TeV scale. We will discuss different ways to lower the energy scale of baryogenesis and present the corresponding lower bounds on the particle's mass. This is done specifically for the inert doublet model with heavy Majorana neutrinos and then we indicate how to extrapolate the results to other scenarios. We also revisit the question of whether or not dark matter, neutrino masses, and the cosmic baryon asymmetry can be explained simultaneously at low energies in the inert doublet model.
|
|