|
Garcilazo, H., Valcarce, A., & Vijande, J. (2017). (4)(Lambda Lambda) n system. Chin. Phys. C, 41(7), 074102–6pp.
Abstract: Using local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nn system, and the latest updates of the n Lambda and Lambda Lambda Nijmegen ESCO8c potentials, we study the possible existence of a (4)(Lambda Lambda)n bound state. Our results indicate that the (4)(Lambda Lambda)n is unbound, being just above threshold. We discuss the role played by the S-1(0) nn repulsive term of the Yukawa-type Malfliet-Tjon interaction.
|
|
|
Garcilazo, H., Valcarce, A., & Vijande, J. (2017). Stable bound states of N's, Lambda's and Xi's. Rev. Mex. Fis., 63(5), 411–422.
Abstract: We review our recent work about the stability of strange few-body systems containing N's, Lambda's, and Xi's. We make use of local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nucleon-nucleon system and the latest updates of the hyperon-nucleon and hyperon-hyperon ESCO8c Nijmegen potentials. We solve the three-and four-body bound-state problems by means of Faddeev equations and a generalized Gaussian variational method, respectively. The hypertriton, Lambda np(I)J(P) = (1/2)1/2(+), is bound by 144 keV; the recently discussed Lambda nn (I)J(P) = (1/2)1/2(+) system is unbound, as well as the Lambda Lambda nn (I)J(P) = (1)0(+) system, being just above threshold. Our results indicate that the Xi NN, Xi Xi N and Xi Xi NN systems with maximal isospin might be bound.
|
|
|
Garcilazo, H., Valcarce, A., & Vijande, J. (2020). Neutral baryonic systems with strangeness. Int. J. Mod. Phys. E, 29(1), 1930009–22pp.
Abstract: We review the status as regards to the existence of three- and four-body bound states made of neutrons and Lambda hyperons. For interesting cases, the coupling to neutral baryonic systems made of charged particles of different strangeness has been addressed. There are strong arguments showing that the Lambda nn system has no bound states. Lambda Lambda nn strong stable states are not favored by our current knowledge of the strangeness -1 and -2 baryon-baryon interactions. However, a possible Xi(-) t quasibound state decaying to Lambda Lambda nn might exist in nature. Similarly, there is a broad agreement about the nonexistence of Lambda Lambda n bound states. However, the coupling to Xi NN states opens the door to a resonance above the Lambda Lambda n threshold.
|
|
|
Garcilazo, H., Valcarce, A., & Vijande, J. (2020). Xi(-)t quasibound state instead of Lambda Lambda nn bound state. Chin. Phys. C, 44(2), 024102–7pp.
Abstract: The coupled Lambda Lambda nn – Xi-pnn system was studied to investigate whether the inclusion of channel coupling is able to bind the Lambda Lambda nn system. We use a separable potential three-body model of the coupled Lambda Lambda nn – Xi-pnn system and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a bound state by a large margin. Instead, we found a Xi(-)t quasibound state above the Lambda Lambda nn threshold.
|
|