|
Gil, A., Diaz, J., Gomez-Cadenas, J. J., Herrero, V., Rodriguez, J., Serra, L., et al. (2012). Front-end electronics for accurate energy measurement of double beta decays. Nucl. Instrum. Methods Phys. Res. A, 695, 407–409.
Abstract: NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-beta decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.
|
|
|
Herrero, V., Toledo, J., Catala, J. M., Esteve, R., Gil, A., Lorca, D., et al. (2012). Readout electronics for the SiPM tracking plane in the NEXT-1 prototype. Nucl. Instrum. Methods Phys. Res. A, 695, 229–232.
Abstract: NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
|
|