|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Lambard, G., Mangano, S., Sanchez-Losa, A., et al. (2015). Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. J. Cosmol. Astropart. Phys., 12(12), 014–27pp.
Abstract: The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Hernandez-Rey, J. J., Illuminati, G., Sanchez-Losa, A., et al. (2017). Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope. J. Cosmol. Astropart. Phys., 04(4), 019–24pp.
Abstract: ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.
|